Genotype by Environment Interactions
affecting

Simulation of Rice Phenology

Master's thesis

Linda Groot Nibbelink
Matr. No. 861841

MSc. Double degree,
University of Hohenheim &

Universitat fir Bodenkultur Wien

Supervisor: Prof. Dr. Folkard Asch
Institute of Agricultural Sciences in
the Tropics,

Management of Crop Water Stress in

the Tropics and Subtropics

August 2022



Thesis prepared in fulfilment of the double degree

Master of Science in
Organic Agriculture and Food Systems

University of Hohenheim
and

Master of Science in
Organic Agricultural Systems and Agroecology
Universitat fur Bodenkultur, Vienna (BOKU)

Supervisor: Prof. Dr. Folkard Asch

Institute of Agricultural Sciences in the Tropics
Management of Crop Water Stress in the Tropics and Subtropics
University of Hohenheim

Co-supervisor: Prof. Dr. Hermann Birstmayr

Institute of Biotechnology in Plant Production
Institute of Plant Breeding
Universitat fur Bodenkultur, Vienna (BOKU)



This work was conducted in collaboration with AfricaRice

and financially supported by ATSAF's Junior Scientist Program

=\ UNIVERSITY OF GO o
Wy HOHENHEIM ‘%Njﬁ AfricaRice

|1818 ATSAF T riz pouss




Acknowledgements

First of all, | would like to express my gratitude to all researchers and employees at
AfricaRice who were involved with executing the rice garden trials and collecting the
data. Their work forms the basis for this study. My work is building forth on analysis
previously done on this dataset by Pepijn van Oort (generating missing weather
data) and Elke Vandamme (quality control), for which | am grateful. Special thanks
go to Saito Kazuki, for managing this project and for being my contact person at

AfricaRice.
| thank ATSAF for their financial support.

My thanks and appreciation go above all to prof. Folkard Asch, for long and fruitful
scientific discussions, for all the advice and suggestions he provided during our
(nearly) weekly meetings and for encouraging me. Thanks to Sabine Stuerz for her

expertise and being available to answer my questions.

| appreciate my colleagues at GZPK, for giving me extra time off, even during the
busy harvest season, so | could finish this thesis in a good manner. Special thanks to

Monika Bauman for proofreading this thesis.

| may have been far from my family throughout my studies, but my parents always
made sure | knew they support and love me. Many thanks for their emotional
support and their trust in my ability to successfully complete this master thesis.
Special thanks go to Annika Syrén and Pieter Vlag for their suggestions regarding

data analysis.

Last but not least, | would like to thank my partner, Oskar Syrén, for his unwavering
love, for bearing with me through difficult and stressful times and for happily

agreeing to move across Europe with me.



Abstract

Adapting rice production in Sub-Saharan Africa to future challenges such as climate
change and maintaining food security requires functional crop models to evaluate
the potential of a production environment in combination with selected rice
varieties. The backbone of such models is accurately simulating phenology across a
wide spectrum of environments. Rice garden experiments were conducted at five
of AfricaRice's research locations with 25 sowing dates (SD): Cotonou, Benin, 2SD;
Mbe, Ivory Coast, 5SD; Ambohibary, Madagascar, 55SD; Fanaye, Senegal, 7SD; Ruvu,
Tanzania, 6SD. Days from sowing to flowering (f) were simulated for 80 varieties
across all these environments using cardinal temperatures derived from three
existing phenology models developed by Summerfield et al. (1992), Dingkuhn et al.
(1995) and Stuerz et al. (2020). The data from this project showed that the
relationship between development rate (DR) and mean temperature is not linear, as
assumed in Summerfield’s model, but rather stagnates as temperature increases.
Therefore a new model was developed (Asch-Groot Nibbelink; AGN) where this
relationship was captured by fitting a second orderregression (DR =a* T2+ b * T +
c) and taking two tangents: one horizontal at the vertex and one sloped with
tangency point where DR is half of DR at the vertex. Base temperature is where DR=0
while optimum temperature is where the two tangents intersect. Temperature sum
is the inverse of the slope of the sloped tangent. When regressing residuals
(simulated f - observed f) against other climatic factors such as photoperiod,
radiation, vapour pressure deficit, and relative air humidity (RH), it was found that RH
explained 38,4% of the residuals. Therefore, AGN was adjusted to include a
genotype-specific RH-adjustment factor resulting in optimum temperatures
increasing with increasing RH. With a slope of 0.937, an r2 of 0.938 and RMSE of 12.3
days when regressing simulated f against observed f, AGN proofed to simulate
genotype by environment effects on phenology better than the three tested rice
phenology models. It is therefore suggested to include an RH-adjustment factor for

optimum temperature into the phenology routine of existing rice growth models.

Keywords: Oryza sativa, phenology, crop duration, temperature, relative humidity
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1 Introduction

Rice (Oryza sativa) is a major staple food crop in Sub-Saharan Africa (SSA). However,
paddy rice production falls behind global levels and is insufficient to fulfil the current
demand. In 2019 average global rice yield was 4,631 kg/ha, while average yield in
SSA was only 2,124 kg/ha, with lowest yields in Middle Africa (970 kg/ha) (FAQO,
2020). In 2018 60% of rice consumption in SSA was covered by regional production
while 40% was imported, mainly from Asia (AfricaRice, 2018; Saito et al., 2019).
Besides being a major money drain out of the continent (AfricaRice, 2018), it leaves
the region vulnerable to food insecurity. As we are currently witnessing with the war
between Russia and Ukraine, global food trade can be disrupted quickly with
massive impacts on food prices and availability elsewhere. Increasing rice self-

sufficiency would improve food security and aid economic development in SSA.

Rice demand is expected to increase over the coming decades due to population
growth. Currently 1.1 billion people live in SSA. This is expected to double by 2050
and to rise to around 3 billion by 2075 (United Nations, 2022). Moreover, climate
change will result in more extreme weather events and prolonged periods of

drought, thus challenging food production even further.

Crop modelling has the potential to positively contribute to food and nutritional
security worldwide (Reynolds et al., 2018). Adapting rice production in SSA to future
challenges such as climate change and maintaining food security requires well-
functioning rice growth models to evaluate the potential of a production
environment in combination with selected rice varieties. The backbone of such crop
growth models is accurately simulating phenology, i.e. the timing of periodic growth
events such as emergence, flowering and maturity and how these are influenced by
the environment. Climate change makes model predictions less accurate if the
underlying environmental factors influencing phenology and genotype by
environment (G x E) interactions are not well understood and incorporated into the

models (Stuerz et al., 2020).

Rice development is mainly influenced by temperature and photoperiod (Dingkuhn

et al., 1995; Summerfield et al., 1992). Crop duration can be simulated using
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cardinal temperatures: a base temperature (Tease), below which there is no
development; an optimum temperature (Topr), where development rate is highest;
a maximum temperature (Twax), above which there is no development; and
temperature sum (Tsum), the number of accumulated heat units i.e. degree-days a
plant requires to complete a phenological phase. These phenological parameters
are assumed to be genetically fixed and thus should not change when grown under
different environmental conditions (Dingkuhn et al., 1995). Accurate simulation of
crop duration depends on the phenology model applied and on the environments
in which the photothermal constants were determined. For better estimation of
cardinal temperatures, a given genotype should be grown in a wide range of

environments.

Cardinal temperatures are used in rice growth models (e.g. ORYZA, CERES-RICE) in
combination with weather data to simulate crop duration. This can be used to create
cropping calendars and advice on an optimum sowing window to increase
production levels. This can be applied in e.g. decision-support tools. An example of
such a decision-support tool is RiceAdvice, developed by the Africa Rice Center
(AfricaRice). This smartphone app has been designed to provide location-specific
advice to farmers and extension agents on nutrient management, cropping
calendars and good agricultural practices (RiceAdvice, 2022). Being able to
accurately model phenology over a wider range of environments, can be used to

improve accuracy and applicability of such tools.



2 Hypothesis and Research Objectives

A project was conducted between 2013 and 2017 where 80 rice varieties with
diverse genetic backgrounds and characteristics were grown in rice garden trials.
These varieties were exposed to a wide range of photo-thermal environments by
planting them at different seasons and at five locations across Sub-Saharan Africa,
while management was the same in each of the 25 environments. This study is based

on data collected during that project.

The hypothesis at the basis of this thesis is that photothermal responses to the
environment are genetically fixed. Therefore, cardinal temperatures can be derived,

and crop duration can be estimated using phenological models.

Adapting rice production in Sub-Saharan Africa to future challenges such as climate
change and maintaining food security requires functional crop models to evaluate
the potential of a production environment in combination with selected rice
varieties. The backbone of such models is accurately simulating phenology across a

wide spectrum of environments. Therefore, the research objectives are:

1. To analyse how genotype by environment interactions affect rice phenology
2. To estimate genotype-specific cardinal temperatures of 80 rice varieties

3. To suggest improvements for rice phenology models



3 Literature review

3.1 Rice Phenology

Phenology is the study of plant growth and development regarding the timing of
the various developmental stages. The life cycle of a rice crop is illustrated in figure
1. A rice plant's development can be divided into three phenological phases

(Vergara, 1991):

1. Vegetative phase (VP): From sowing to panicle initiation
2. Reproductive phase (RP): From panicle initiation to flowering

3. Ripening phase (RIP): From flowering to maturity

Vegetative phase | Reproductive phase Ripening phase
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Figure 1: Rice crop life cycle divided in phenological phases. Adapted from (Aguilar, 2019).
The vegetative phase starts with sowing, followed by germination, leaf emergence,
tillering, stem elongation, increase in biomass and ends with panicle initiation (PI).
This phase is the main source of variation in crop duration. Duration of VP is mainly
influenced by temperature experienced by the rice plant at the meristem and
daylength i.e. photoperiod (PP) (Dingkuhn et al., 1995; Summerfield et al., 1992;
Vergara, 1991). However, it has also been reported that relative air humidity (RH) is

negatively correlated with crop duration (Stuerz et al., 2020).

VP consists of a basic vegetative phase (BVP) and a photoperiod sensitive phase
(PSP). If during BVP a genotype-specific number of heat units (Tsum) are accumulated

and PP conditions are favourable, the rice plant will proceed to panicle initiation and



the reproductive phase. Rice is, like many tropical species, a short-day plant. That
means that for PP-sensitive plants flowering is induced when PP falls below a certain
threshold . During long days, PSP is extended and flowering is delayed. However,

not all genotypes are sensitive to daylength.

The reproductive phase starts with Pl, encompasses booting and heading stage and
ends with flowering. This phase typically lasts 30 - 35 days (IRRI, n.d.; Vergara, 1991).
During booting the plant is most sensitive to cold and heat spells, causing spikelet
sterility and thereby reducing yields (Dingkuhn, 1995; Jagadish et al.,, 2007;
Shrestha et al., 2013).

During the ripening phase grains increase in size and weight. Ripening starts with
flowering, followed by the milky and doughy stage and ends with physiological
maturity, when the seeds have become hard and dry and are ready to be harvested.
RIP is reported to be relatively constant at about 30 days (IRRI, n.d.; Vergara, 1991).
However, in temperate and high-altitude regions, RP and RIP may take twice as long

to complete (Vergara, 1991).

3.2 Genotype by Environment Interactions
The phenotype of any plant is the result of the genotype, the environment and its
interactions. Phenotypic value can thus be understood as the sum of genotypic

value, the environmental influence and the interactions of these: P=G +E + G * E.

Environmental factors can be divided into a) fixed factors, which are defined by the
location and experimental setup, such as location, altitude, soil, fertilization, weed
and pest management; and b) random factors, such as weather conditions, drought,
spontaneous pest outbreaks. The environment influences certain traits, one of them
being crop duration. E.g. in one environment a rice plant may take 90 days to reach
flowering, while in another environment it takes 110 days. The genotype influences
crop duration as well: some genotypes are typical short-duration varieties, while

others are typical long-duration varieties. On top of this, there are G x E interactions.



Without G x E interactions, the best genotype in one environment, would be the best
in all environments and the difference between the genotypes would remain equal.
However, in reality this is not the case. As illustrated in figure 2, crop duration of

genotype A and B differs from one environment to the other.
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Figure 2: Genotype by Environment interactions affecting crop duration. Data from Rice
Garden Trials. Genotype A is WITA 4 (V5), Genotype B is WAB 2101-WAC1-1-TGR5-
WAT Bé (V38). Environments correspond to E1-E4.

The difference in crop duration between genotype A and B does not remain equal:
at E1 the difference in crop duration is just 1 day, while at E2 the difference is 7 days
and at E3 the ranking even changes. At E3 genotype A takes longer to reach
flowering than genotype B. This is called a cross-over effect, or quantitative
interaction (Bernardo, 2010). A specific environmental difference may have a greater
effect on some genotypes than on others. The greater the effect, the more sensitive
this genotype is to the environment (Bernardo, 2010). These interactions do not only
complicate selection of superior genotypes for plant breeders, since it limits the
association between phenotypic and genotypic values (Romagosa et al., 1993), but

It also complicates phenological modelling.

The biological basis of G x E interactions is complex, as usually many genes are

involved. A trait such as crop duration is the result of a series of biochemical



reactions and interactions within the plant initiated by genes, modified and
controlled by other genes and by the external environment (Romagosa et al., 1993).
Some researcher therefore try to link the genes to phenology through genome-wide
association studies to find the QTL linked to phenological parameters (Dingkuhn et

al., 2017).

When individuals of different genotypes are grown in specific environments, the G
x E interaction can be studied in more detail. When environmental factors are
known, the influence of these individual factors can be studied. In this study the
meteorological data is known, which allows us to study the influence of these factors

on crop duration.

3.3 Rice crop models

Rice crop models e.g. ORYZA, CERES-RICE and APSIM are complex models built on
several subroutines. There are subroutines for e.g. yield, spikelet sterility, soil
interactions, nitrogen limitation, water balance, and of course for phenology.
RIDEV2 for example has a subroutine dedicated to calculating water temperature,
as this is the temperature the rice plant experiences for the majority of time to
flowering (Dingkuhn et al., 2017). This is used to calculate physiological temperature

and subsequently to simulate crop duration.

Crop models have been combined and improved over the years creating new
models, with subroutines tailored to different applications. A comprehensive
overview of the history of rice crop models has been given by van Oort & Dingkuhn

(2021), figure 3.

ORYZA is one of the major rice crop models. The original ORYZA1 model was
developed by (Kropff et al., 1994) and written in the code language FORTRAN
(Bouman et al., 2001). RIDEV1 and RIDEV2 are able to model rice development and
spikelet sterility and are therefore suitable for creating cropping calendars, but not
for modelling yield (Dingkuhn et al., 2014). ORYZA1 was further developed to
ORYZA2000, which was then combined with RIDEV2 creating version ORYZAv2n14,
which is able to model heat and cold-induced spikelet sterility (van Oort et al., 2015).
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Figure 3: Brief historical overview of rice models. Source: van Oort & Dingkuhn, 2021

3.4 Phenology models

It is important to understand the difference between crop models, based on several
subroutines, and the simpler phenology models, which are used to simulate timing
of different phenological phases and crop duration and form the backbone of these
crop models. In this thesis three readily available simple phenology models are

compared (Dingkuhn et al., 1995; Stuerz et al., 2020; Summerfield et al., 1992).

3.4.1 Summerfield

Summerfield et al. (1992) conducted pot experiments with 16 diverse rice
genotypes grown under 13 different photo-thermal regimes in controlled-
environment growth chambers. They found that if rice was grown in 11.5h days and
at sub-optimal temperatures the rate of development from sowing to flowering was
a linear function of both temperature and photoperiod, without interaction between
these two factors. The rate of progress, or development rate (DR) is the inverse of

the time in days from sowing to flowering (f):



(1) DR = 1/f
This resulted in the phenology model:
(2) DR=a*T+b* PP+c

Where T is the mean diurnal air temperature (°C), PP is the photoperiod (h d') over
the period from sowing to flowering and a, b, and c are genotype-specific constants.

b typically has a negative value in short-day plants, such as rice.

In PP-insensitive plants, in environments where PP is maintained constant
throughout the growing period and for PP-sensitive plants where daylength is
maintained below the critical photoperiod, which is genotype-specific but generally
around 11,5 h, the photoperiod term can be deleted from the equation, which

results in the simplified phenology model:
(3) DR=ax*T+b

This relationship is only linear if two conditions are met: a) the minimum daily
temperature experienced by the plant is not below Tease; and b) the warmest

temperatures do not exceed Topr.

The base temperature is where DR = 0. Below this temperature, there is no
development in the rice plant and no heat units are accumulated. When regressing
mean temperature on the x-axis against DR on the y-axis, the base temperature is

the intersect with the x-axis. This can be calculated as:
(4) Tpase = —b/a

The temperature sum (Tsum) is the genotype-specific amount of heat units i.e.

degree-days above Tgase required for flowering to occur and is calculated as:

(5) Tsym = 1/a

3.4.2 Dingkuhn

Dingkuhn et al. (1995) developed a simple model for photothermal effects on

flowering to explain variations in crop duration, based on air temperature.



Genotype-specific cardinal temperatures were quantified by linear regression of the

sum of average daily air temperature against observed f across environments:
(6) DD = Tpase * f + Tsym

Where DD is the sum of the average daily air temperature > 0°C from sowing to
flowering, i.e. degree-days [°Cd]. From this regression it follows that Tgase is the slope
of the regression line and Tsum is the intercept. This equation only holds if
temperatures reflect the temperatures experienced by the plant and if PP is either

corrected for, or insignificant.

Development rate can be expressed as the number of heat units experienced during

a day divided by the number of heat units required for flowering:

(7) DR — Tav—Tpase

Tsum

The development stage (DS) ranges from 0 at sowing to 1 at flowering (Penning de
Vries et al., 1989). Since DR is the inverse of f, it follows that summing the daily

development rate steps will give DS = 1 when flowering is reached:
(8) DS = YDR

The fit of the model calibration and thus of the cardinal temperatures was tested by
dividing observed f by simulated f. Dingkuhn et al. (1995) found that prediction
errors following from the simple model only based on thermal effects, could be

partially explained by daylength at Pl. Incorporating PPp into eqn 7 lead to:

_ Tav—Thase
(9) DR = Tsym11*(1+CPP+(PPpi—11))

Tsym11 are the sum of heat units required until flowering at PP = 11h. CPP is the slope
constant for photoperiodism. PPp is the photoperiod at P, estimated as 30 days

before heading.

3.4.3 Stuerz

Currently existing phenology models based on photoperiod and temperature often
have reduced replicability beyond the environments they have been calibrated for

(Stuerzetal., 2020). In order to increase applicability of phenology models to a wider
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range of environments, Stuerz et al. (2020) looked at which environmental factors
i.e. climatic determinants, could explain differences in crop duration between
environments. They tested the international test variety IR 64 at eight sites at in total
87 sowing dates, covering the complete environmental range where rice is

commonly produced.

Stuerz et al. (2020) first applied egn 3 to their data and calculated crop duration as
the inverse of DR. They subsequently regressed residuals (simulated f - observed f)
against a range of climatic determinants. Stuerz et al. (2020) found that mean relative
air humidity is negatively correlated with the residuals, indicating that low RH
reduces DR and increases f. They corrected the crop duration for the effect of RH.

Time to flowering was not simulated using cardinal temperatures.
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4 Materials and Methods

4.1 Environments

4.1.1 Locations

This experiment was conducted at five of AfricaRice’s research locations across SSA:
Fanaye in Senegal (16.54N, -15.19W, altitude 10m asl), Cotonou in Benin (6.42N,
2.33E, altitude 27m asl), Mbé in Ivory Coast (7.88N, -5.11W, altitude 273m asl), Ruvu
in Tanzania (-6.72S, 38.67E, altitude 29m asl) and Ambohibary in Madagascar (-
19.63S, 47.14E, altitude 1645m asl), see figure 4.
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Figure 4: Rice Garden Trial Sites. Map source: Google Maps

4.1.2 Sowing dates
At each of the five locations the trial was repeated at different sowing dates (SD)
between 2013 and 2017. In total there were 25 sowing dates: Cotonou, Benin, 2SD;

Mbe, Ivory Coast, 5SD; Ambohibary, Madagascar, 5SD; Fanaye, Senegal, 7SD; Ruvu,
Tanzania, 65SD.
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An environment is a general term that covers different spatial, temporal and

management conditions under which a plant is grown (Romagosa et al., 1993), so

each SD is a different environment. The environments were chosen to cover a wide

range of environmental conditions (table 1).

Table 1: Description of environments incl. general weather conditions during growth season. Env. is
environment. Lat is latitude; Long is longitude, both given in degrees; alt. is altitude in m asl.

Env Country Site Lat Long Alt | Sowing date | Weather conditions
E1 | Benin Cotonou 6.42 2.33 27 20-9-2013 | Warm, humid
E2 | Benin Cotonou 6.42 2.33 27 8-8-2014 | Warm, wet
E3 | Ivory Coast Mbe 7.88 -5.11 273 29-5-2014 | Warm, humid
E4 | Ivory Coast Mbe 7.88 -5.11 273 1-11-2014 | Warm days, cool
nights, humid to arid
E5 | Ivory Coast Mbe 7.88 -5.11 273 6-3-2015 | Warm, humid
E6 | Ivory Coast Mbe 7.88 -5.11 273 3-6-2015 | Warm, humid
E7 | Ivory Coast Mbe 7.88 -5.11 273 2-11-2015 | Warm days, cool
nights, humid to arid
E8 | Madagascar | Ambohibary -19.63 | 47.15| 1645 7-11-2015 | Cool, humid
E9 | Madagascar | Ambohibary -19.63 | 47.15| 1645 7-1-2016 | Cool, humid
E10 | Madagascar | Ambohibary -19.63 | 47.15| 1645 15-2-2016 | Cold, humid
E11 | Madagascar | Ambohibary -19.63 | 47.15| 1645 12-8-2016 | Cool, arid to humid
E12 | Madagascar | Ambohibary -19.63 | 47.15 | 1645 | 14-10-2016 | Cool, humid
E13 | Senegal Fanaye 16.54 | -15.19 10 13-3-2014 | Very hot, very arid
E14 | Senegal Fanaye 16.54 | -15.19 10 27-7-2014 | Very hot, arid to
humid
E15 | Senegal Fanaye 16.54 | -15.19 10 | 28-10-2014 | Hot days, cool nights,
very arid
E16 | Senegal Fanaye 16.54 | -15.19 10 26-1-2015 | Hot, very arid
E17 | Senegal Fanaye 16.54 | -15.19 10 27-2-2015 | Very hot, very arid
E18 | Senegal Fanaye 16.54 | -15.19 10 16-7-2015 | Hot, humid
E19 | Senegal Fanaye 16.54 | -15.19 10 | 16-10-2015 | Hot days, cool nights,
very arid
E20 | Tanzania Ruvu -6.72 38.67 29 13-3-2014 | Warm, wet
E21 | Tanzania Ruvu -6.72 38.67 29 5-6-2014 | Warm, arid
E22 | Tanzania Ruvu -6.72 38.67 29 15-8-2014 | Warm, arid
E23 | Tanzania Ruvu -6.72 38.67 29 11-3-2015 | Warm, wet
E24 | Tanzania Ruvu -6.72 38.67 29 18-5-2015 | Warm, humid to dry
E25 | Tanzania Ruvu -6.72 | 38.67 29 | 22-10-2015 | Warm, humid
4.1.3 Weather conditions

The weather graphs (figure 5) show the wide range in temperature, precipitation,

RH, solar radiation and PP between the sites and sowing dates.
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Figure 5: Weather graphs of Cotonou, Benin (A); Mbe, Ivory Coast (B); Ambohibary, Madagascar (C);
Fanaye, Senegal (D); and Ruvu, Tanzania (E). The black, dark grey and medium grey lines visualise
maximum, mean and minimum daily temperature [°C]. The solid black line that changes with monthly
steps is the mean solar radiation [MJ*m-2*d-1]. The dashed black sinus-shaped line is photoperiod in
hours. The dotted turquoise line represents daily mean relative air humidity [%]. Blue bars represent
precipitation [mm]. For certain dates, rainfall exceeded 100mm: Cotonou 26/02/2014 122mm;
Ambihibary 01/02/2017 109mm; Ruvu 11/04/2014 103mm. Black triangles at the bottom indicate
sowing dates.

Ambohibary, with its high altitude and furthest distance to the equator, is cooler than
other sites with occasional night frost during winter season and has greatest
variation in daylength over the year. Fanaye has the most extreme hot temperatures
with large variation between diurnal minimum and maximum temperatures. It is also

the driest site with RH dropping regularly below 20% during the dry season.
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4.2 Genetic material

Eighty rice genotypes were tested during this project. A table with the characteristics
of the genetic material including variety code, variety name, breeding line, country
of origin, parents, species, subspecies and the production system is given in
appendix |. Some varieties are interspecific, which means they are a cross between
Asian rice (O. sativa) and African rice (O. glaberrima). Some genotypes are not
official varieties, but rather breeding lines that have not (yet) been approved as such.
However, for simplicity all genotypes will be referred to as ‘varieties’ and have been

given a variety code number (Vcope).

Rice is commonly grown in three different production systems: Irrigated lowland (IL),
rainfed lowland (RL) and rainfed upland (RU). IL is paddy rice, where rice is grown in
bunded fields in a standing layer of water. RL is rainfed with small bunds i.e. dykes
around the fields that capture and store rainwater in the field. RU is purely rainfed,
the fields have no bunds to retain rainwater (Rao et al., 2017). The varieties have
been bred for these different production systems but were all grown under IL

conditions during this project.

In E7 (Ivory coast) and E19 (Senegal) V61 was omitted and 6 ARICA genotypes were
added to the RGTs. In Madagascar 20 additional genotypes were tested, totalling
100 genotypes. The genotypes that were tested at few environments have been

excluded from further analysis.

4.3 Experimental design and management

The 80 genotypes were grown in an augmented design with 5 check genotypes and
5 blocks. Each block within one environment consisted of 20 plots, i.e. 5 check
genotypes and 15 test genotypes (Figure 6). At each sowing date the test and check
genotypes were randomized within each block, except for E25, where the design

had not been randomized.
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Sowing1l Block 1 Block 2 Block 3 Block 4 Block 5

CV-1 | TV-n | TV-n CVv-1 [ TV-n [ TV-n | TV-n | TV-n [ TV-n | CV-2 | TV-n | TV-n | CV-3 | TV-n | TV-n

TV-n | TV-n | CV-3 TV-n | TV-n | CV-4 [ TV-n | TV-n | TV-n [ TV-n | TV-n | TV-n | TV-n | TV-n | CV-2

TV-n | TV-n | TV-n TV-n | CV-2 | TV-n | TV-n | TV-n | CV-3 | TV-n | TV-n | TV-n | TV-n | TV-n | TV-n

TV-n | CV-2 | TV-n TV-n | TV-n | CV-3 | TV-n | CV-5 | TV-n | TV-n | CV-4 | TV-n | CV-5 | TV-n | TV-n

TV-n | TV-n | TV-n TV-n | TV-n | TV-n | CV-5 | TV-n | TV-n | CV-1 | TV-n | CV-1 | TV-n | TV-n | CV-4

Block 3 Block 4 Block 5

TV-n | CV-3 | TV-n [ TV-n | TV-n | TV-n [ TV-n | CV-5 | TV-n [ TV-n | CV-5 | TV-n

Sowing 2 Block 1

TV-n | TV-n | CV-4

CV-3 | TV-n | TV-n CV-4 | TV-n | TV-n | TV-n | CV-2 [ TV-n | TV-n | TV-n | TV-n | CV-2 | TV-n | TV-n

TV-n | CV-1 | TV-n TV-n | TV-n | TV-n | CV-2 | TV-n | CV-4 [ TV-n | CV-3 | TV-n | TV-n | TV-n | TV-n

TV-n | TV-n | TV-n TV-n | TV-n | CV-5 [ TV-n | TV-n | TV-n | CV-1 | TV-n | TV-n | TV-n | CV-3 | CV-4

CV-5 | TV-n | TV-n TV-n | CV-1 | TV-n | TV-n | TV-n | TV-n | TV-n | TV-n | CV-1 | TV-n | TV-n | TV-n

Block 3 Block 4 Block 5

TV-n | TV-n | CV-2 [ TV-n | TV-n | TV-n [ TV-n | CV-5 | TV-n [ TV-n | TV-n | TV-n

Sowing 3 Block 1

TV-n | TV-n | TV-n

CV-2 | TV-n | TV-n TV-n | TV-n | TV-n [ TV-n | TV-n | TV-n | CV-1 | TV-n | TV-n [ CV-5 | CV-2 | TV-n

TV-n | TV-n | CV-1 CV-3 [ TV-n | CV-1 | TV-n | TV-n ( CV-2 | TV-n | TV-n | TV-n | TV-n | TV-n | CV-4

CV-4 | TV-n | TV-n TV-n | TV-n | TV-n [ TV-n | TV-n | TV-n | CV-4 | TV-n | CV-1 [ TV-n | TV-n | TV-n

TV-n | TV-n | CV-3 TV-n | CV-5 | TV-n | CV-4 | CV-3 | TV-n [ TV-n | TV-n | TV-n | CV-3 | TV-n | TV-n

Figure é: Example of a field layout for the Rice Garden plots with different sowing dates of
different genotypes in an augmented design. Green colours indicate the different replicate
blocks in each sowing block. TV-n = Test variety where n represents the number of the test
variety; CV-n = Check variety where n represents the number of the check variety. Check varieties
are planted in each replicate block (within sowing block), while test varieties are planted only
once within each sowing block.

The trials were established by transplanting. Seeds were sown in nursery beds (after
pre-germination in the trials in Mbé, Fanaye and Ambohibary) and transplanted at 2
plants per hill after two to three weeks in plots of 1.2 m x 1.6 m (1.92 m?) and a hill
to hill spacing of 20 x 20 cm, thus totalling 48 rice plants per plot (Figure 7). Plot to
plot spacing was 40cm. Urea, Triple Super Phosphate and KCl| were applied at
transplanting at rates of 50 kg N ha', 30 kg P ha” and 50 kg K ha'. At 20 days after
transplanting, urea was top-dressed at 75 kg N ha™'. 50 days after transplanting
another top-dress of urea and KCl was applied at rates of 75 kg N ha™ and 50 kg K
ha™.

Plots were flooded with the water table adapted to seedling size at transplanting
and later on maintained at 5 - 10 cm. Weeds were controlled by regular manual
weeding. Pesticides were applied where necessary and fields were protected by

nets against birds. Off-types were removed.
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Figure 7: Rice Garden plot of 1.92 m2 plot with 48 hills of a genotype (24 hills in the border
lines and 24 hills in the middle of the plot for observations (2 squares of 9 hills for harvest and
post-harvest observations and 1 line of 6 hills for destructive observations and 1 line of 6 hills
for destructive observations on panicle initiation).

4.4 Data collection

4.4.1 Rice garden trials

Field technicians visited the trials on a daily basis and recorded dates of sowing,
50% emergence, transplanting, 50% panicle initiation of the main stems (PI), 50%
heading of all stems, 50% flowering of all stems, 85% maturity and harvest. The date
of panicle initiation was monitored through destructive observation in six plants of
each plot. Since the panicle is only visible a number of days after actual PI, five to
seven days were deducted from the date when Pl was first observed. The date of
50% flowering was recorded as the date at which 50% of the stems in a plot were
flowering. Dates of 85% maturity and harvest were recorded as well, except for
Madagascar, where 50% maturity date was recorded. Besides phenological data,
spikelet sterility and grain separation data were recorded, but not further used for

this thesis.

In roughly a quarter of the cases (563 out of 2000) 50% emergence date was not
registered. Since sowing date was always registered, this was used in further
phenology analysis. For roughly a quarter (499 out of 2000) Pl data was missing. At
E1,E8,E9,E10, E16, E17 no Pl data was collected, at other environments Pl data was
missing for some genotypes. 92 times the flowering date was not observed, either
because the plots had been damaged or because the variety never reached
flowering. The latter was the case in the majority of genotypes in E9, where 62
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flowering dates were missing. The 18 observed flowering dates were all from short-

duration varieties.

Besides phenological data, agronomic data on plant height, number of panicles,
grain yield, straw weight per area and per hill and spikelet sterility was collected.
Percentage of partially filled grains and weight of empty, partially and completely
filled grains were recorded as well. This data has not been analysed further in this

thesis, but it forms an interesting source for further analysis.

At E1 and E14 there was rat damage, which influenced grain separation data, but
not phenology data. At E6 there was wind damage and diseased plants, which
resulted in stunted plant growth. At E20 there was flooding resulting in complete
submergence which lasted for five days in mid-April, about two weeks after
transplanting. At E22 there was a bird attack which caused some missing phenology

and harvest data.

4.4.2 Microclimate plots

At three of the research locations (Cotonou, Ruvu and Fanaye) microclimate (MC)
data was collected. At the MC plots, phenological stages were recorded as in the
rice garden trials, plus leaf area index was recorded. Additionally, the time of
flowering for the start, peak and end of flowering were visually inspected and
recorded every day during the period of panicle emergence (i.e. heading) in Fanaye
and Cotonou. Inside- and above-canopy temperature and humidity were monitored
using MINCER devices (Cotonou and Fanaye). Tinytag data loggers were used to
record water temperature and inside- and above-canopy temperature and humidity
in Cotonou, Fanaye and Ruvu. However, MC data was often incomplete and of low
quality due to dysfunctional measurement devices. E.g. for only two environments
water temperature data was complete. Missing data could not be estimated. Thus,

MC data was found to be insufficient and not further considered during analysis.

4.4.3 Meteorological data
Data on minimum, mean and maximum air temperature; minimum, mean and
maximum relative air humidity; wind direction and speed; solar radiation and

precipitation were collected on daily basis from meteorological stations nearby the
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trial sites. Furthermore, daylength including and excluding twilight and minimum
and maximum vapor pressure deficit were calculated. Missing data was estimated
by P. van Oort based on the global yield gap project. Missing Tav was calculated as
the average of minimum and maximum recorded temperature of that day. Estimated
data was checked against additional weather data from nearby stations in
Madagascar and Ivory Coast and was found to be reliable. Since there was missing
data for all five locations and not for all locations additional weather data from

nearby weather stations was available, estimated data was kept to be consistent.

4.5 Data analysis

4.5.1 Data preparation

The dataset was prepared for analysis using Microsoft Excel. Data on phenology,
spikelet sterility and grain yield were collected per trial and merged into one
overview table. Data on check varieties was averaged, resulting in one data point
per check variety per environment. Block effect was not taken into account, as this
was complicated to estimate from the augmented design, would have considerably
complicated further analysis and is negligible in comparison to differences between
locations and sowing dates. Variation due to environment is larger than block
effects, thus including a block effect was not expected to considerably change the

outcome of the analysis.

Quality control of the phenology data was performed manually. Data that seemed
unrealistic or doubtful was marked. Marked data was usually explained during
further analysis; data that could only be explained as measurement or data entry
error was omitted (155 Pl dates for E13 and E15, explained why in chapter 5.2).
Based on the phenological data in combination with the meteorological data, new
variables were calculated per genotype/environment combination, e.g duration,
DR, dd, mean air temperature, cumulative radiation, mean VPD, mean RH and PP of

different phenological phases.
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4.5.2 Analysing phenology models

Three rice phenology models described in chapter 3.4 were applied to estimate the
genotype-specific cardinal temperatures and a new phenology model was
developed. Stuerz’ model was adapted so it could be used to estimate cardinal
temperatures and include an RH-adjustment factor. f was simulated using the
cardinal temperatures estimated for the different models and simulated f was
regressed against observed f. Residuals (sim. f - obs. f) were regressed against
several environmental factors. The outcome of this regression was used to improve
the newly developed phenology model. All statistical tests (i.e. regressions,
ANOVAs) and simulation of flowering dates were performed with SAS software,
version 9.4 for windows. Significance level was set at a=.05. Complete SAS code is
given in Appendix Il. Data was visualised using SigmaPlot version 12.5. Excel was
used for data preparation, to compile input data for both SAS and SigmaPlot and to

compile output tables.
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5 Results

5.1 Crop duration

There is large variation in crop duration between environments and genotypes.
Chhomrong (V30) had the shortest average crop duration at 81 days, followed
shortly by V79 (FOFIFA 172) at 83 days. Shortest crop duration was recorded for
Chhomrong sown September 2013 at Cotonou (E1), where it took only 53 days to
reach flowering. V38 (WAB 2101-WAC1-1-TGR5-WAT B6) was the genotype with
longest average crop duration at 129 days. The longest crop duration measured
during this project was for V27 (K5) sown February 2015 at Ambohibary (E10). E10
was also the environment with the longest average crop duration at 313 days. Long
crop durations in this environment can be explained by the fact that rice was sown
at the start of the cold season with shortening days. This was considerably longer
than the second longest duration environment: E11 (sown August 2016,
Ambohibary) with 211 days. Rice sown march 2015 in Mbe had an average crop
duration of 83 days, followed shortly by E23 (sown March 2015, Ruvu) with an
average duration of 85 days. All observed crop durations from sowing to flowering

for the 80 varieties in the 25 environments are presented in Appendix lll.

5.2 Panicle Initiation

Since Pl is difficult to observe, Pl data was checked for possible errors. For the 1501
genotype-environment combinations where both Pl and flowering date were
recorded, days from sowing to Pl were regressed against days from sowing to
flowering, grouped per location (figure 8). In reality, the locations consist of several
sowing dates, making up different environments. This explains why data from one

location may appear as several groups of data points.

If time from PI to flowering would be constant at 30 days, as assumed by Dingkuhn
et al. (1995), the regression equation would have been y =x—30, while a
regression equation of y = 0.726x — 5.52 with r’=.818 was found based on our data.
There are clear differences between locations. Ambohibary has the longest crop

duration, due to the low temperatures at this high-altitude location. However, with a
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Figure 8: Days from sowing to Pl regressed against days from sowing to flowering across
all genotypes and environments. Environments are grouped per location.

regression equation of y = 0.905x — 31.6 and an r2 of .920, it is actually closest to the
expected outcome of all locations. Pl data at some Senegalese environments
behaves strangely. These were further investigated by separating the regression

into individual sowing dates for Fanaye (figure 9).

At E13 the regression line (y = —2.12 + 55.64) has a slightly negative slope. For E13
all Pl dates were recorded between 51 and 57 days after sowing, whereas the
observed flowering dates range from 77 to 134 days. This can only be explained in
two ways: 1) at E13 the length of VP is relatively stable, while RP varies; or )
measurement error. The first option is not in line with data observed at other
environments nor with literature. Since the second option is more likely, Pl data of

E13 was discarded.

At E15 and to a lesser extend at E14 and E18 Pl dates do not follow a normal
distribution, but rather a stratified pattern. This indicates that Pl data was not

recorded daily, but instead only at certain dates. At E24 for 36 out of 80 genotypes
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Figure 9: Days from sowing to Pl regressed against days from sowing to flowering across all
genotypes for the sowing dates in Fanaye where Pl was recorded (E13, E14, E15, E18, E19).

Pl date was recorded at 50 days after sowing. At E18 22 PI dates were recorded at
68 days after sowing. These are strong deviations from a normal distribution.
However, despite this being likely due to measurement error, it cannot be ruled out
with 100% certainty that there was a peak in Pl on those dates. The Pl data for E14,
E18 and 19 is more or less in line with Pl data observed at other locations and was
therefore kept. Pl data from E15 was omitted. After exclusion of the obviously
erroneous Pl data 1346 Pl dates remained in total. A boxplot was made for the
observed number of days from Pl to flowering per environment for all locations

(figure 10).

Pooled over genotypes and environments, average time from Pl to flowering was
31.33 £0.28 days with a standard deviation of 10.37 days. Duration of RP in Ruvu
(E20-E25) has less variation than at the other locations. Average duration of RP in
Cotonou (E2) and at E5 in Mbe was similar to observations made in Ruvu. The short

average durations in Ruvu and Cotonou could be environmentally caused, or it
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Figure 10: Boxplot of days from panicle initiation to flowering per environment where
Pl date was recorded.

could be a biased observation, e.g. the observers always observed Pl late. In

Ambohibary (E11 and E12) RP takes longer than at other sites.

Next, Pl was estimated as 30 days before flowering. Estimated Pl date was plotted
against observed Pl date (figure 11). If the simulation would have been accurate,
data points should approximately fall on a 1:1 line with intercept close to 0 and slope
close to 1. However, the intercept is -13.92 days and slope is 16.2% off. The
coefficient of determination is high (r?=.921), suggesting that the correlations
between the observations are strong and therefore the model assumption might be
incorrect. The result of estimating Pl date as fixed at 30 days before flowering,

independent of genotype and environment, was therefore found unsatisfactory.

Next, the amount of heat units accumulated from Pl to flowering was calculated to
check whether RP was fixed in amount of heat units required to complete this phase

rather than days (figure 12).
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The mean amount of dd required to complete RP was 771.8+11.4 °Cd with a
standard deviation of 212.6 °Cd. Expressing duration of RP in thermal time instead
of in days, brought duration for E11 and E12 in line with other environments. They
have a similar duration to E7 and shorter duration than E14 when measured in dd.
Thus RP lasts longer in cool environments in absolute time (days), but not when
measured in thermal time. E14 sticks out with a significantly higher amount of dd
required to reach Pl than other environments at this location (E18 and E19). This is
likely the result of measurement error. As discussed before, observed Pl dates for
E14 were doubtful. Variation in duration of RP in Mbe (E3-E7) remains. Duration of
RP in Ruvu (E20-E25) remains lowest and most stable of all locations. Thus estimating
Pl based on number of degree-days improves results for the cool environments of

Ambohibary, but not for the other locations.

Because observation of 50% flowering date is more reliable than observation of 50%
Pl, because there were more observed flowering dates than Pl dates (n=1908 versus
n=1346) and because missing Pl dates could not be accurately estimated, it was
decided to proceed analysis based on f and to leave Pl out of further phenology

modelling.

5.3 Cardinal temperatures

In this chapter cardinal temperature estimates for three out of 80 varieties are
presented: 1) IR64 (V2), the international test variety and a medium-duration variety;
2) K5 (V27), a long-duration variety; and 3) Chhomrong (V30), a short-duration
variety. Cardinal temperatures with accompanying regression equations including

r2 and CV for the other 77 varieties are provided in appendix IV.

5.3.1 Summerfield

Daylength only influences a rice plant's DR during PSP. Since Pl dates were often
missing or of doubtful quality and could not be accurately estimated, timing of PSP
could not be established. Therefore the simple Summerfield-model based only on
temperature (eqn 3) was applied to estimate Tgase as the intersect with the x-axis (egn

4) and Tsum as the inverse of regression slope (eqn 5) (figures 13-15).
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Figure 13: Development rate (1/f) of IR64 versus mean air temperature during this period at
24 environments (E9 missing) across 5 different sites.
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Figure 14: Development rate (1/f) of K5 versus mean air temperature during this period at
24 environments (E9 missing) across 5 different sites.
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Figure 15: Development rate (1/f) of Chhomrong versus mean air temperature during
this period at 25 environments across 5 different sites.

Chhomrong reaches higher DR and has lower Tsym (1489°Cd) and Tgase (4.64°C)
compared to IR64 (Tsum =1976°Cd; Tease=5.22°C) and K5 (Tsum =2219°Cd;
Tease=5.01°C). Development of Chhomrong starts at lower temperatures and
requires less degree-days to reach flowering, resulting in shorter crop duration.
When looking at all 80 varieties, r2 ranges from .447 (V22)to .737 (V34), with average
r2 across all genotypes of .594, this indicates that the regression is not a very good
fit to the data. Estimated Tegase is low, for some genotypes unrealistically low. For
three genotypes (V4, V28 and V77) Tease drops below the freezing point, while
highest Tgase was 7.92°C.

DR and mean temperature are lower at Ambohibary than at any other location, for
every variety. A regression only through the four (IR64 & K5) or five (Chhomrong)
datapoints at this site would result in a much steeper slope, thus a higher Tgase and
lower Tsum. DR in Fanaye is consistently lower than at other locations with similar
mean temperatures. This suggests that Summerfield's model is not applicable to this

wide range of environments, including cool to hot and humid to arid conditions.
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5.3.2 Dingkuhn

Since Pl date could not be accurately simulated, eqn 6 was applied to estimate Tsum
as the intersect with the y-axis and Tease as the slope of this regression (figures 16-
18). Ambohibary, with its long crop duration both in time (days) and thermal time
(dd) disproportionally influences the regression. creates a leverage point: the effect
of this single data point with its extreme x-value strongly influences the complete
regression. E.g. for IR64 including E10 regression line is y = 10.62x + 1439; r?=.848,
while without E10 the regression changes to y = 10.51x + 1450 with r2=.640.

Nevertheless, this phenology model, has a better overall fit than Summerfield with
an average r? across all genotypes of .772, ranging from .486 (V4) to .921 (V21). At
Fanaye consistently more dd were required to reach flowering than at other
locations with similar crop durations. Tease ranges from 8.90°C (V42) to 10.96°C
(V18). Tsum has a wide range from 976°Cd in the short-duration variety V79 to
1825°Cd in V70. In V70 high Tsum is combined with a low Tgase (8.98°C), this explains
why a variety that ranked 56" in crop duration can still have the highest Tsum, because

with a low Tease and without Topr it is possible to accumulate more dd per day.
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Figure 16: Degree-days from sowing to flowering of IR64 versus number of days from sowing
to flowering at 24 environments (E9 missing) across 5 different sites.
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Figure 17: Degree-days from sowing to flowering of K5 versus number of days from sowing to
flowering in 24 environments (E9 missing) across 5 different sites.
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Figure 18: Degree-days from sowing to flowering of Chhomrong versus number of days from
sowing to flowering in 25 environments across 5 different sites.
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5.3.3 Stuerz

In this thesis Stuerz’ model was applied in a different way than they did in their paper.
Nevertheless, since my interpretation of this model is based on their publication and
the main difference with other phenology models is the inclusion of RH when
simulating crop duration, it will still be referred to as the Stuerz-model. Whereas they
corrected the residuals for the effect of RH, here a multiple linear regression (egn

10) was applied to get the regression parameters (a, b, and ¢ ) instead:
(10) DR=axT+b*RH+c

These regression parameters were used to calculate genotype-specific
phenological parameters: Tsum, Teaseo (base temperature at the theoretical value
RH=0%) and an RH-adjustment factor (RHapy). Tsum is calculated as in Summerfield,

so it remains unaffected by RH. Tease o is calculated as:

Cc

(11) Tbase_O = -

Tease is negatively correlated with RH, i.e. in a more humid environment
development starts at a lower base temperature. This is captured by a genotype-

specific RH-adjustment factor for Tgase:
b
(12) RHqj = — 7
Equations 11 and 12 were used in combination with average RH to calculate Tgase:
(13) Thase = Tbase_O + RHadj * RHg,

Tease depends on genotype-specific Tease o, RHaps and the measured daily RHay and
therefore differs from day to day. Figures 19-21 show the resulting regression plane
of egn 10 for varieties IR64, K5 and Chhomrong. Tease decreases with increasing RH.
According to this model, a rice plant starts developing at lower temperatures in

humid environments.
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Figure 20: Multiple linear regression of DR of IR64 versus mean air temperature and mean RH from
sowing to flowering in 24 environments (E9 missing) across 5 different sites
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Figure 21: Multiple linear regression of DR of Chhomrong versus mean air temperature
and mean RH from sowing to flowering in 25 environments across 5 different sites.

Stuerz’ model is better at capturing f in Fanaye. However, it systematically
overestimates DR at Ambohibary. This regression model has a better coefficient of
determination than Summerfield and Dingkuhn with r2 ranging from .679 (V16) to
.923 (V7), with average r?=.827 across all genotypes, suggesting that adding the

extra explanatory variable RH improves the regression model.

5.3.4 Asch-Groot Nibbelink

When regressing DR against mean temperature over the period from sowing to
flowering following Summerfield’s model, it became apparent that the data does
not follow a linear pattern. Rather, DR stagnates as average temperatures increase.
This indicates the existence of a Topr above which DR no longer increases. To capture
this, a new simple phenology model was developed by Asch and Groot Nibbelink:
the Asch-Groot Nibbelink (AGN) model. To find the cardinal temperatures, a second

order regression was performed:
(14) DR=a*T?+b*T+c

Based on this regression two tangents were taken, creating a broken-stick model

where the intersect with the x-axis equals the base temperature and the breaking
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point equals the optimum temperature. The first tangent is horizontal touching the

vertex. The vertex x-coordinate (h) were calculated as

(15) h= -2

2a

The vertex y-coordinate (k) was found by applying h into eqn 14:
(16) k=axh?+bxh+c.

The horizontal tangent is thus equal to DR = k. The second, sloped, tangent was
taken where DR was halfway between 0 and the maximum DR. The tangency point’s

y-coordinate was
(17) Vian = 0.5 % k

Tangency point's x-coordinate was found by rewriting egn 14 and substituting DR

by Yean:
—b+(b2—(4a*(c—ytan)))
(18) Xtan = \/ 2a .
The tangent line equation is:
(19) DR=mx=T + cigp

Where m is the slope of the tangent line, calculated as
(20) m = 2a * X¢gn + b.
Cian is the constant of the sloped tangent:

(21) Ctan = Ytan — (m * xtan)

The intersect of the sloped tangent with the x-axis is taken to be the base

temperature:

(22) Thase = — Stan

m

The optimum temperature is the intersect of the two tangents:

(23) Tope = "t

m
Tsum is the inverse of the slope of the sloped tangent:
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(24) Tsym = i

The results of this model as applied to IR64, K5 and Chhomrong are visualised in
figures 22-24, where the black line is the second order regression and the grey lines

are the tangents forming the broken-stick model.

With coefficients of determination ranging from .591 (V28) to .907 (V44) and an
average of r?=.759, this second order regression equation is a significant
improvement compared to Summerfield and has similar fit to Dingkuhn, while
Stuerz' regression still has a better fit to the data. The AGN-model captures
Ambohibary’s data better, although it overestimates DR for most sowing dates in
Fanaye. Tease estimates are rather high, ranging between 10.74°C (V78) and 13.95°C
(V39).
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Figure 22: Development rate of IR64 versus mean air temperature from sowing to
flowering in 24 environments (E9 missing)
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37



5.3.5 Cardinal Temperature Estimates

Cardinal temperature estimates for IR64, K5 and Chhomrong (table 2) differ
between genotypes and phenology models applied. Tsum estimates are highest
under Summerfield, which goes hand in hand with this model resulting in lowest
Tease estimates. If Tgase is low, more degree-days are accumulated per day. Stuerz
has high Tsum estimates combined with high Tease estimates at RH=0%. However, the
rice plants always experience a lower Tgasg, as it reduces with RH and RH is never
equal to 0%. Air humidity typically ranges between 50 to 100%, depending on the
environment. Although in Fanaye, Senegal, during 41 days an average air humidity
of less than 10% was recorded. Nevertheless, according to our findings of applying
Stuerz’ model, the rice plant will experience base temperatures ranging between
2°C to 9°C on the vast majority of days, depending on genotype and environment.
Even the cool Madagascar environments average temperatures are well above 9°C
on most days. The introduction of Topr in the AGN-model limits the amount of
degree-days a plant can collect per day. This is reflected by lower Tsum estimates.
Cardinal temperature estimates found by applying the Dingkuhn-model are
moderate. They are not extremely high or low compared to the results of the other

phenology models.

Table 2: Cardinal temperature estimates for IR64 (V2), K5 (V27) and Chhomrong (V30) using four
different phenology models

Variety Summerfield Dingkuhn Stuerz AGN
TSUM TBASE TSUM TBASE TSUM TBASE_O RHADJ TSUM TBASE TO PT
IR64 1976 522 | 1439 10.62 | 1807 1530 -0.127 | 944 1226 22.90
K5 2219  5.01 | 1460 11.85 | 2007 15.04 -0.123 | 891 13.42 2246

Chhomrong | 1489  4.64 | 1108 9.84 1335 16.05 -0.140 | 758 11.44  23.03

The short duration variety Chhomrong always has the lowest Tsym and for three out
of four models the lowest Tgase. Only in Stuerz’ model Chhomrong has the highest
Tease, but at the same time it has the highest RH-adjustment factor. Thus it is more
sensitive to RH and in environments with a high RH it actually has a lower Tgase than
the other varieties. Chhomrong also has the highest Topr, thus it is able to collect
more degree-days per day than any of the other varieties. The long duration variety

K5 has the highest Tsym for three out of four models. Tsum found with AGN is highest
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for IR64. However, since IR64 has lower Tgase and higher Topr than K5, it can collect
more degree-days per day and thus will be able to reach Tsym and therefore

flowering sooner.

5.4 Simulated Flowering Dates

Genotype-specific cardinal temperatures were used in combination with weather
data to simulate flowering dates. This was done by calculating daily physiological
temperature (Tervs), the degree-days a rice plant can use for development. Truys was
calculated as the daily average temperature (Tav) above Tgase and below Topr, with

Tease adjusted for daily RH:
(25) Tonys = max (min(Typr, Tap) — (Toase + RHaaj * RHgy), 0)

For those models without Topr, Torr was set to 99°C. As this temperature is never
reached in field conditions, it is effectively the same as applying no Toprr. For models
without RH-adjustment, this factor was set to 0, so no correction for RH was made to
Tease. The max-term ensures that if T, < Tyse, TrHys cannot become negative and no
degree-days are subtracted, since development does not reverse. Note that Tavand
RH,, are daily averages, while T and RH are averages of the observed time from

sowing to flowering

Next, daily Teavs was summed from the sowing date until the date that Tsum was
reached. This date was returned as the simulated flowering date. This was done for
each genotype x environment combination and for each phenological model.
Simulated flowering dates were regressed versus observed flowering dates to

analyse the accuracy of the phenology models (figures 26-37).

5.4.1 Summerfield

The Summerfield-model performs well when simulating f for Cotonou, but
underestimates fin Fanaye and in Ambohibary (figure 25). The regression is far from

a 1:1 line (y=0.555+45.45), but yet a high correlation (r?=.831), which suggests that
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the Summerfield-model assumptions might be incorrect, or the limits within which

this model works well have been transgressed.

Figure 26, presenting the individual sowing dates at Ambohibary, shows that this

model is able to simulate E8, sown November 2015, quite well. However, for the

other sowing dates, especially E10 (sown February 2016), Summerfield's model

cannot accurately simulate days to flowering. When looking at the individual sowing

dates in Fanaye (figure 27), E14 (sown July 2014) and E18 (sown July 2015) are

captured relatively well, but there is systematic underestimation of time to flowering

at the other environments (E13, E15-E17, E19), resulting in a skewed overall

regression line for this location.
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Figure 25: Observed versus simulated days to flowering following Summerfield-model
across all environments and genotypes.
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Figure 26: Observed versus simulated days to flowering following Summerfield-model for
sowing dates in Ambohibary, Madagascar (E8-E12) across all genotypes.
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5.4.2 Dingkuhn

The Dingkuhn-model results in quite accurate simulations of time to flowering in
Cotonou, Mbe and Ruvu (figure 28). However, there is large variation in accuracy of
crop duration simulation in Ambohibary and a systematic underestimation in Fanaye
across all sowing dates (figure 30). Looking at the individual sowing dates at
Ambohibary (figure 29) it can be observed that Dingkuhn is not able to accurately
capture any of the individual sowing dates, with a particularly strong overestimation
of f at E8 and a great scatter at E9. Interestingly, most flowering dates for E10 are
close to the 1:1 line, but for some genotypes observed f was much shorter than the

model predicts, which skews the complete regression.

400
y=1.058x - 0.677
r2=.762 ’“ & ’. e

0

& 2933,
o 300 *% 2
C
5 "‘? ¢ ’ o : z

< @
3 ¢ $ o * .0
L @
o ® 0.: *
e <

200 - . ®
¥
o > QM
Q
© o 0
g
= e, Overall Regression
@100 ~ & / 4 Mbe, Ivory Coast
oy . Ruwu, Tanzania
= Fanaye, Senegal
v  Cotonou, Benin
/ ¢ Ambohibary, Madagascar
0 T T T
0 100 200 300 400

Observed Days to Flowering

Figure 28: Observed versus simulated days to flowering following Dingkuhn-model across
all environments and genotypes.
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Figure 30: Observed vs simulated days to flowering following Dingkuhn for
Ambohibary (E8-E12) across all genotypes
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Figure 29: Observed versus simulated days to flowering following Dingkuhn for all
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5.4.3 Stuerz

The Stuerz-model was better able to simulate f in Senegal than the other tested
models (figure 31). However it struggles to capture the crop duration at some of
Ambohibary’s sowing dates, which skews the overall regression line downwards.
When looking at the individual sowing dates in Ambohibary (figure 32), it can be
seen that Stuerz’ model is still able to capture E8, but overestimates f at the other
sowing dates. Especially at E10 the simulated crop duration is too short, thus this
environment again forms leverage points and suggests that Stuerz’ model cannot
capture this extreme environment. At Fanaye at all sowing dates, Stuerz’ model

simulates f better than Summerfield, Dingkuhn or AGN (figure 33).
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Figure 31: Observed versus simulated days to flowering following Stuerz-model
across all environments and genotypes.
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Figure 33: Observed versus simulated days to flowering following Stuerz-model for
all sowing dates in Ambohibary, Madagascar (E8-E12) across all genotypes.
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Figure 32: Observed versus simulated days to flowering following Stuerz-model
for all sowing dates in Fanaye, Senegal (E13-E19) across all genotypes.
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5.4.4 Asch-Groot Nibbelink

The simple AGN-model is a great improvement on the Summerfield-model with a

slope that is 11.4% off and the highest r2 at .900 of the tested phenology models

(figure 34). This model is best at simulating crop duration in the cool environment of

Ambohibary, however it was unable to capture some genotypes at E9 and E10

(figure 35). There is a severe systematic underestimation of crop duration in Fanaye

(figure 36), with a slope of 0.345 and an r2 of .473. It Is able to simulate time to

flowering for E14 and E18 very accurately actually, however, this model severely

underestimates f for E13, E15-E17 and E19.
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Figure 34: Observed versus simulated days to flowering following simple AGN-

model across all environments and genotypes.
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5.5 Comparing phenology models

The residuals (simulated f - observed f) of the four phenology models tested (figure
37), are all significantly different from each other and from 0. Dingkuhn is the only
model with a positive residual least squares (LS) mean, which is furthest deviated
from 0. Thus this model simulates on average a too long crop duration, while for the
other models the time to flowering is on average underestimated. LS-mean for AGN

was closest to 0.
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Figure 37: Boxplot of residuals (simulated f - observed f) for the four tested phenology models

Dingkuhn had had the highest RMSE (30.1 days), but the regression of simulated
versus observed time to flowering was closest to a 1:1 line (only 5.8% off, intercept
closest to 0). Lowest RMSE (12.7 days) was found in Summerfield, where the slope
was furthest off with 44.5% (table 3). The coefficient of determination was highest for
AGN, which also had the second-best slope (11.4% off) and intercept, while RMSE

(15.0 days) was close to those of Summerfield and Stuerz.
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Table 3: Results from regressing simulated versus observed time to flowering for Summerfield,
Dingkuhn, Stuerz and AGN phenology models

Method Intercept Slope r? RMSE LS-mean

Residual
Summerfield 45.54 0.555 0.831 12.7 -5.6043°
Dingkuhn -0.68 1.058 0.762 30.1 6.0189°
Stuerz 43.00 0.562 0.799 14.3 -7.4198¢
AGN 9.20 0.886 0.900 15.0 -3.9303¢

Each phenology model has their own strengths and weaknesses. Dingkuhn and
Stuerz were best at simulating f for the arid Senegalese environments with a 25%
underestimation and 28% overestimation respectively. However, Summerfield and
AGN were best at capturing E14 and E18 with the sowing dates in July at the start of
the rainy season in Fanaye. However, these phenology models fell short when trying
to simulate f for the other sowing dates at Fanaye, when RH was much lower. Time
to flowering in Ambohibary was best approached by the AGN-model. In general the
inclusion of an optimum temperature had a greater effect on improving phenology
modelling than the inclusion of RH. However, including both may improve

phenology models even further.

5.6 Analysing residuals

A simple linear regression was performed of the individual environmental variables
RH, VPD, cumulative radiation (rad), PP and PP including twilight (PPrwi) against
residuals to see which of these, besides temperature and, in case of Stuerz, RH, are
correlated (table 4). If any of these environmental factor are correlated, including

them in the phenology model might improve its predictive power.

Cumulative radiation explained 69.5% of the residuals from the Summerfield-model.
This was the highest correlation found between residuals and an environmental
factor of all four models. Radiation explained with 67.8% only a slightly lower
percentage of the residuals of the Stuerz-model. Radiation is positively correlated
with temperature: a high solar radiation goes together with high temperatures. In
the AGN-model this effect has already been captured by the quadratic temperature

term in the regression and the subsequent inclusion of an optimum temperature.
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This explains the lower coefficient of determination (r2=0.091) between radiation

and residuals in the AGN-model.

Table 4: Results of simple linear regressions of the individual environmental variables (RH, VPD, Rad,
PP and PPrw) against residuals (simulated f - observed f) for each phenology model.

Summerfield Dingkuhn Stuerz AGN

N

Int. slope r? Int. slope r Int. slope r2 Int. slope r

RH |-47.81| 0.639 |0.138 |-56.37 | 0.95 0.223 | 10.65 | -0.274 | 0.024 | -47.62 | 0.662 0.384
VPD | 3.29 | -0.509 |0.041 |35.21 | -1.67 | 0.327 | -18.50 | 0.635 0.061 | 8.86 -0.732 | 0.221
Rad | 35.92| -0.020 |0.695 |-2.513 | 0.0041| 0.022 | 34.46 | -0.020 | 0.678 | 5.41 -0.0045| 0.091
PP | 24.64| -2.509 | 0.002 |-214.6 | 18.29 | 0.068 | 131.33 | -11.513 | 0.035 | -81.02 | 6.397 0.029
PPrwi| 46.16 | -4.009 | 0.005 (-233.0 | 18.51 | 0.072 | 148.29| -12.059 | 0.040 | -74.15 | 5.438 0.022

The main factor explaining residuals in Dingkuhn is VPD with 32.7%. VPD is
calculated based on both temperature and RH. RH in itself would explain 22.3% of
the residuals. PPrwi and radiation only explained 7.2% and 2.2% of the residuals
respectively. In other models the correlation of daylength, with or without twilight,
was even lower. This is likely due to the fact that PP was averaged over the complete
period from sowing to flowering, while a rice plant is only sensitive to daylength
during PSP. If PSP could be simulated and average PP during this period would be
used for the regression, perhaps this would result in a higher correlation between

PP and residuals.

Relative humidity is highly positively correlated with residuals in the AGN-model
(r2=.384). This correlation is higher than VPD. Probably this is because VPD is based
on both temperature and RH and there is already an additional temperature term
included in AGN. Interestingly, there is a low but still significant correlation between
RH and the residuals of the Stuerz-model, despite this environmental factor already

being included into the model.

Next, multiple linear regressions with forward selection of these environmental
factors was carried out for each of the four phenology models (tables 5 - 8). Since
PP with and without twilight are highly correlated by definition, including both

factors would result in multicollinearity. Therefore, and because PPrw had a slightly

50



higher correlation with residuals in three out of four models, PPrw was included in

the multiple linear regression and PP was excluded.

Table 5: Multiple linear regression with forward selection of environmental factors on residuals of
Summerfield-model.

Summerfield
Step | Variable Number Partial R®> Model R> C(p) FValue Pr>F
Varsin
1 Rad 1 0.6952 0.6952 2045.75 4347.85 <.0001
2 VPD 2 0.0938 0.7891 831.833 847.28 <.0001
3 PPrwi 3 0.0532 0.8423 143.986 642.60 <.0001
4 RH 4 0.0109 0.8532 5.000 140.99 <.0001

Table 6: Multiple linear regression with forward selection of environmental factors on residuals of
Dingkuhn-model.

Dingkuhn
Step | Variable Number Partial Rz Model R2 C(p) FValue Pr>F
Varsin
1 VPD 1 03268 0.3268 377.665 925.40 <.0001
2 PP1wi 2 0.0498 0.3766 210.952 152.11 <.0001
3 RH 3  0.0359 0.4125 91.2057 116.41 <.0001
4 Rad 4 0.0260 0.4386 5.000 88.21 <.0001

Table 7: Multiple linear regression with forward selection of environmental factors on residuals of
Stuerz-model.

Stuerz
Step | Variable Number Partial Rz Model R> C(p) FValue Pr>F
Vars in
1 Rad 1 0.6777 0.6777 2205.88 4008.27 <.0001
2 RH 2 0.0540 0.7317 1519.76 383.10 <.0001
3 VPD 3 0.0425 0.7742 979.333 358.68 <.0001
4 PPrwi 4 0.0766 0.8508 5.000 976.33 <.0001
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Table 8: Multiple linear regression with forward selection of environmental factors on residuals of
AGN-model.

AGN
Step | Variable Number Partial R®> Model R> C(p) FValue Pr>F
Varsin
1 RH 1 0.3842 0.3842 329.538 1189.1 <.0001
2 VPD 2 0.0639 0.4481 99.799 220.53 <.0001
3 Rad 3 0.0179 0.4660 36.8465 63.85 <.0001
4 PPrwi 4 0.0093 0.4753 5.000 33.85 <.0001

All variables entered into the multiple linear regression were significant for all
models, thus the forward selection resulted in all variables being included in the final
regression models. Although all factors were found to be significant, some of them
only slightly improve overall model R?, e.g. inclusion of PPrw in the multiple linear

regression for AGN only improved the model fit with 0.93%.

For Stuerz and Summerfield, the complete regression model explained >85% of the
residuals, while in AGN the complete regression model explained 47.53% and in
Dingkuhn it only explained 43.86%. This is partly because these models were
already better at simulating flowering dates, thus the residuals are smaller, while in
Summerfield and Stuerz, which have a larger discrepancy between simulated and
observed flowering dates, a larger part of these residuals can be explained by these

climatic factors.

It was found that RH explained 38.4% of the residuals of the AGN-model. While other
environmental factors also significantly explained part of the residuals, they could
only explain a rather small proportion. After fitting RH, VPD only explained an
additional 6.4%. Including more factors into a phenology model complicates the
model and requires higher data input. The general mantra in modelling is ‘'simple is
beautiful’. Therefore it was decided to further develop the AGN-model to include

the effect of RH, without considering the other environmental factors.
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5.7 Improved Asch-Groot Nibbelink model
The original AGN-model was further developed to include the effect of RH to
improve the simulation of time to flowering. This was done by applying a multiple

regression including both the quadratic temperature term and RH:
(26) DR=a*T*?+b*T+c*RH+d

The challenge was to translate this regression equation into estimations of cardinal
temperatures including an RH-adjustment factor, so it can be used to simulate days
to flowering. Five alternative versions were developed and tested to see which one

was best at balancing simplicity and accuracy.
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5.7.1 AGN Version 1

In the first version Tease and Tsum were calculated as in the simple AGN-model, while
Torr is adjusted to RH. As can be seen in figure 38, the sloped tangent remains
constant, while the horizontal tangent changes position with changing RH. Tangents
that change with RH are coloured red, while cardinal temperatures affected by RH
are coloured dark red. Tangents and cardinal temperatures that remain unaffected
by RH are black. Regression equation has only been given in figure 38, not in the

figures of versions 2-5 as it is the same regression, just different tangents.

Horizontal tangent lines and corresponding optimum temperatures were calculated
for RH=0% (T,pt0) and for RH=100% (Tp¢100) - The RH-adjustment factor for Toer is

calculated as:
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Figure 38: Multiple regression of development rate (1/f) of IR64 versus mean air temperature and
mean relative air humidity (RH) in 24 environments (E9 missing) across 5 different sites. AGN version
1 where Torr increases with RH, while Tgase and Tsum remain constant.
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5.7.2 AGN Version 2

In the second version, Tsum and Topr remain constant and are calculated as in the

original AGN-model, while Tease is adjusted for RH (figure 39). Thus both tangents

change position, while only Tease decreases as RH increases.
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Figure 39: Multiple regression of DR of IR64 vs mean T and mean RH in 24 environments (E9
missing) across 5 different sites. AGN version 2 where Tsase decreases with increasing RH, while
Torr and Tsum remain constant.
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5.7.3 AGN Version 3

In the third version, the horizontal tangent remains unaffected by RH, while the
sloped tangent changes with RH while its slope remains constant (figure 40). Thus,

Tease and Topr change with RH but the same RH-adjustment factor applies to both

TBASE and TOPT.
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Figure 40: Multiple regression of DR of IR64 vs mean T and mean RH in 24 environments (E9
missing) across 5 different sites. AGN version 3 where sloped tangent moves with RH while
horizontal tangent remains as in simple AGN; thus Tsase and Toprr vary with same RHapy factor.
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5.7.4 AGN Version 4

In this version both tangents move with RH, while the slope of the sloped tangent
remains constant. This means that both Tgase and Topr are adjusted to RH, although

they are not equally sensitive. Figure 41 shows that Tgase responds much stronger to

humidity than Topr, where the change is barely noticeable.
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Figure 41: Multiple regression of development rate (1/f) of IR64 versus mean air
temperature and mean relative air humidity (RH) in 24 environments (E9 missing) across
5 different sites. AGN version 4 where both tangents move with RH, thus both Tgase and
Torr are adjusted to RH while Tsum remains constant.
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5.7.5 AGN Version 5

In this last and most complex version all cardinal temperatures are adjusted to the

effect of RH (figure 42). The sloped tangent changes in angle, causing Tsum to change

with RH. When simulating the flowering dates this is captured by multiplying Tsum

with an RH-adjustment factor. Thus in humid environments the slope of the tangent

increases and Tsym is reduced.
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Figure 42: Multiple regression of development rate (1/f) of IR64 versus mean air temperature and
mean relative air humidity (RH) in 24 environments (E9 missing) across 5 different sites. AGN
version 5 where both tangents move with RH, and the slope changes with RH. Thus all cardinal

temperatures have an individual RH-adjustment factor.

5.7.6 Comparing model versions

Table 9 shows the cardinal temperatures and RH-adjustment factors for IR64 as

estimated with the five different versions of the improved AGN-model. This was

done for each of the 80 genotypes.

Table 9: Cardinal temperature for IR64 as estimates based on the five versions of AGN-model

Method Tsum Tease Topr

RHADJ.SUM

RHADJ.BASE

RHADJ.OPT
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AGNv1 | 944 12.26 19.26 0 0 0.060
AGNv2 | 944 16.79 22.90 0 -0.064 0

AGNv3 | 944 16.79 27.44 0 -0.064 -0.064
AGNv4 | 944 16.79 23.79 0 -0.064 -0.004
AGNvV5 | 1274 15.57 25.01 -3.38 -0.051 -0.017

Based on the genotype-specific cardinal temperatures and RH-adjustment factors,
daily Tervs was calculated. For this, egqn 25 was adapted to include both an RH-

adjustment factor for Tease and for Topr:

(28)  Tynys = max (min ((Tope + RHadjopt * RHav), Tay) =

(Tbase + RHadj.base * RHav)' 0)

Note that the RH-adjustment factor for Tease was renamed to specify which cardinal
temperature it adjusts. Whenever in a model version a cardinal temperature is not
adjusted for RH, this factor is simply set to 0. For version 5, Tsum was calculated as
Tsym + RH * RHpp;sym , and thus varied per day. Tphys was again summed until
TSUM was reached, returning a flowering date. The simulated days from sowing to
flowering were regressed versus observed days from sowing to flowering (table 10

and figure 43) and subsequently residuals were calculated and analysed (figure 44).

Table 10: Results from regressing simulated vs. observed time to flowering for the five versions of
AGN-model

Method Intercept Slope r2 RMSE LS-mean

Residual
AGNv1 | 1.65 0.937 0.938 12.3 -5.547 ¢
AGNv2 | 11.85 0.880  0.959 9.3 -1.907 a
AGNv3 | 13.78 0.849  0.956 9.2 -3.597 b
AGNv4 | 5.45 0.899  0.969 8.2 -6.192 ¢
AGNvV5S | 919 0.904 0.954 10.1 -1.880 a
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Figure 43: Simulated versus observed days to flowering for all five versions of the improved AGN-

model
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Figure 44: Boxplot of residuals of the five AGN versions

Mean residuals of version 2 and 5 were not significantly different (p=.941). It is
surprising how close the residuals of these two versions are, considering how
different the cardinal temperatures are estimated. Mean residuals of versions 1 and

4 were also found to be not significantly different from each other at p=.079%6.

Since version 5 is the most complex version with a variable Tsum, and it is not
significantly better at simulating crop duration than any of the other versions, this
version was discarded. Version 1 and 4 have mean residuals furthest deviating from
0. Version 4 has the lowest RMSE (8.2 days). Version 1 has the best results of the
regression from simulated versus observed days to flowering with an intercept of
1.65 and a slope of .937 it was only 6.3% off. Despite this version having a higher
RMSE (12.3 days) and a slightly lower r2 (.938), these values are still a great
improvement compared to the phenology models of Summerfield, Dingkuhn and
Stuerz. The increased complexity from versions 2-5 did not show a clear added
value, i.e. they did not provide major improvements in phenology modelling.

Therefore version 1 is selected to be the final version of the AGN-model.
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6 Discussion

6.1 Timing of Panicle Initiation

According to Vergara (1991) and IRRI (n.d.), RP lasts approximately 35 days.
Dingkuhn et al. (1995) estimate Pl to occur 30 days before flowering, while GRiSP
(2013) describe Pl to occur about 25 days before heading. In contrast to literature,
according to the data from this project duration from Pl to flowering is not fixed in
number of days. The results show a large variation in time from PI to flowering,
suggesting a considerable environmental influence on duration of RP. In the cool
environments of Ambohibary the average time from Pl to flowering was much longer
than at other locations. It was more than twice as long as the average duration in the

warm environments of Ruvu.

Our findings are to some level in accordance with Vergara (1991), who already
reported that the length of RP might take twice as long in temperate and high-
altitude regions. Ambohibary with its elevation of 1634 m above sea level is a typical
high-altitude environment. However, Vergara, (1991) also wrote that length of RP is
fixed in tropical environments, while this study found considerable differences in
duration between tropical environments. E.g duration from Pl to flowering for rice
sown in August 2014 in Cotonou was on average 21 days, while for rice sown in
November 2015 in Mbe duration of RP was on average 41 days, while both are low-

altitude tropical environments.

In RIDEV2 TSUM during RP is set to 400°Cd (Dingkuhn et al., 2017). However, our
data showed an average TSUM during RP of 772°Cd, however this was purely the
sum of air temperatures, without subtracting a daily Thase. Nevertheless, our data
showed considerable variation in RP measured in dd between locations and within
locations. Although assuming a constant TSUM during RP is better than assuming a

constant number of days, it can still not capture the variation observed in reality.

The variation in duration from Pl to flowering can be partially explained by the
influence of environment, partially by measurement error (different observers at

different locations could observe Pl slightly differently) and possibly the genotype
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plays a role as well, e.g. in sensitivity to temperature during RP (Dingkuhn et al.,

2017).

In the phenology subroutine of ORYZA2000, phenology is ranked on a numerical
scale, from emergence (DS=0) to end of BVP i.e. start of PSP (DS=0.4),PI (DS=0.65),
flowering (DS=1) and maturity (DS=2), where DS is the integral of DR (Bouman et al.,
2001; van Oort et al., 2011). In this model, there is a fixed ratio rather than fixed
number of days between Pl and flowering date. Duration of VP can be estimated as
0.65*f and duration of RP can be estimated as 0.35*f. Here PI date is not fixed in
number of days, but instead depends on crop duration, which in turn is influenced
by the environment. However, applying this approach to estimate Pl to our dataset
did not give better results (regression of estimated vs observed days from sowing
to Pl: y =.773x + 11.34; r2=.931) than simply estimating Pl as 30 days before
flowering date (y = 1.162x — 13.92; r2=.921). Neither estimating Pl as a fixed number

of days before flowering nor as a ratio gave satisfactory results.

There is potential to develop a model to simulate Pl date based on the data from
this research project. However, this was not the focus of my thesis research. If Pl date
could be simulated accurately, the models by Summerfield (egn 3) and Dingkuhn
(egn 10) including the effect of PP could be tested and compared to the AGN-

model.

The exact Pl date is difficult to measure and prone to human error, as was shown for
the erroneous Pl data recorded at E13 and E15 in Fanaye, Senegal. The stem has to
be dissected to observe the start of the panicle, which is barely visible with the bare
eye at about Tmm in length (GRiSP, 2013). The AGN-model circumvents this
problem by simulating flowering date without accounting for daylength during PSP,
thus there is no need to know Pl date. Instead it simulates flowering dates based on
cardinal temperatures, air temperature and relative air humidity over the period

from sowing to flowering.

6.2 Model Limits

Every model works well within certain limits. Rice phenology models are limited to

certain environmental conditions. Outside the environmental range they have been
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designed and calibrated for, their predictive power is limited. In this subchapter the

model limits for the tested and newly developed phenology models are discussed.

6.2.1 Summerfield

Summerfield et al. (1992) have clearly defined model limits regarding temperature,
namely that the “coldest values of T experienced by plants are not below the base
temperature at which 1/f= 0" and “that the warmest temperatures experienced are
not above the optimum temperature at which 1/f is a maximal value”. Only when

these conditions are met the relationship between DR and T is linear.

RGT experiments for this project were conducted at a wide range of environments.
At some environments temperatures dropped below base temperatures,
particularly at Ambohibary (E8-E12), while at other environments the rice plants
experienced temperatures beyond Topr, particularly at Fanaye (E13-E19) with
maximum daily temperatures beyond 40°C. At other environments maximum
temperatures peaked beyond Topr as well, e.g. at Ruvu (E20-E25), where daily
maximum temperatures were well above 30°C at most days, which is reflected in DR
no longer increasing with increasing T for some genotypes e.g. IR64. Thus, at a
number of environments Summerfield’s model limits were transgressed, resulting in
unrealistically low Tgase estimations: for three genotypes Tgase was estimated below
freezing point at the highest Tgase found with Summerfield was 7.92°C, which is still

lower than the default base temperatures in most crop models.

Summerfield et al. (1992) already observed that DR stagnates beyond Topr and
propose a broken-stick model with constant or slightly decreasing DR beyond Topr.
Torr was estimated at approximately 25°C (Summerfield et al 1992). However, this
seems to be simply based on visual interpretations of the data and they do not offer

a method for estimating Topr.

6.2.2 Dingkuhn

The simplest Dingkuhn-model as applied in this thesis is limited in that it does not
account for the effects of photoperiodism and transplanting shock, something the
more complex model (eqn 9) does (Dingkuhn et al., 1995). They state that

“prediction errors in exclusively thermal simulation of f partly are due to
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photoperiodism”. They also found a systematic overestimation of Tgasg, ranging from
14.5 to 19.5°C, which is significantly higher than Tgase estimates found when applied
to our dataset (ranging from 8.9 to 11.0°C). They identified a need for including an
optimum temperature and using water temperature instead of air temperature to

improve the model accuracy.

Dingkuhn’s model was developed based on data collected in the Sahel.
Interestingly, this model resulted, similar to Summerfield, in a systematic
underestimation of crop duration at the hot-arid Fanaye environments. Thus,
suggesting that Dingkuhn’s model is limited in simulating crop duration in dry
environments as well, when genotype-specific parameters are calibrated over a
wide range of environments. Overall, this model was better at predicting crop
duration than the Summerfield- and Stuerz-model, mainly due to accurate
simulations of f at Cotonou, Mbe and Ruvu, and due to an overestimation of f in
Ambohibary, which partly compensates for the underestimation of crop durations at
Fanaye. Dingkuhn’s model was able to simulate flowering dates at E10 quite well for
most genotypes, yet it gave poor results at other cool environments, especially E8
and E9. This is odd, as E10 was the most extreme environment regarding low
temperatures and short days, while E8 and E9 had longer days and cool but not

quite as cold temperatures.

Dingkuhn et al. (1995) identified that using water temperatures (Twarer) instead of air
temperatures when estimating cardinal temperatures improves accuracy, because,
as they argue, the temperature at the shoot apex i.e. growing point, is the
physiologically relevant temperature and until booting the apex is below the water
surface. Twaree is influenced by air temperature, wind speed, RH, solar radiation,
water source (e.g. irrigation water heated in a basin or directly from a glacier-fed
river) and crop cover (expressed in leaf area index; LAI). Water temperature was
found to be usually cooler than air temperature at low RH and high LAI. After
booting, the shoot apex rises above the water surface and a rice plant experiences
canopy temperatures from then on, which may significantly differ from air
temperatures outside the canopy i.e. at a meteorological station. During this project,

Twater was measured at MC plots, however it was complete for only two
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environments (E16 and E17). RIDEV2 offers the possibility to simulate Twarer based
on LAl (Dingkuhn et al., 2017). However, LAl data collected during this project was
insufficient to simulate Twarer. Therefore air temperature was used instead. Perhaps
estimating cardinal temperatures based on Twarer would have resulted in better
predictions of f, but the need for additional data on Twarer and/or LAl is a limitation

as this data is often lacking or incomplete.

6.2.3 Stuerz

Stuerz’ model is similar to Summerfield and therefore by definition subject to the
same temperature limitations. Therefore this model ran into the same problems
when simulating flowering dates for Ambohibary as Summerfield’s model. It is, like
Summerfield, still able to simulate flowering dates for E8, but not for any of the other
cool Ambohibary environments. On the other hand the inclusion of RH makes this
model applicable to a wider range of environments with regard to differences in RH.
This is shown by the significant improvements simulation of crop duration for the

arid Fanaye environments.

6.2.4 Asch-Groot Nibbelink

The inclusion of Toer in AGN improves the simulation of flowering dates at
environments with temperatures near and beyond Topr. This model is applicable to
a wider range of environments, especially to hotter environments, than both
Summerfield and Stuerz. The inclusion of an RH-adjustment factor widens the

applicability of this model to more arid environments.

AGN may have an upper temperature limit. When a rice plant experiences
temperatures significantly beyond Toer, DR may reduce, which is reflected by some
rice crop models (e.g. ORYZA-family) by including a maximum temperature (Tuax) at
which DR=0. However, recent studies found that models without a Tuax actually gave
more accurate crop duration simulations (van Oort et al., 2011; Zhang et al., 2016).

No decline in DR at temperatures > Topr was observed in this dataset.

There is potential to include a Twax in the AGN-model as it is based on a second
order regression and a third tangent could potentially be included, mirroring the

first sloped tangent. The intersect of this tangent with the x-axis would be Tyax.
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However, additional data on rice grown in extremely hot environments, especially
hot-humid environments, is required to see first of all if DR declines at mean

temperatures beyond Torr, and if yes, to quantify this decline and estimate Tyax.

6.3 Influence of relative humidity on phenology

It has been shown that RH is positively correlated with DR. Thus the time from sowing
to flowering of rice is shorter in humid environments than in dry environments with
the same mean temperature. This relationship between air humidity and phenology
in rice has been reported by Stuerz et al. (2020). That leads to the question: How

does RH influence phenology?

One explanation could be that low RH conditions lead to higher VPD, thereby
increasing transpiration. This causes the plant to lose more water to the air and
stomatal closure in response to dry conditions to reduce water losses. Stomatal
closure limits gas exchange and all processes depending thereon, including
photosynthesis and development rate. However, rice was grown in a lowland
irrigated production system, thus the plant never experienced drought stress during
the experiments. Thus reduced development rate due to drought-induced stomatal

closure cannot be the answer as to how RH influences phenology in paddy rice.

A more likely explanation is that low RH leads to higher transpiration cooling of the
plant and thus cools down the canopy temperature. This process of transpiration
cooling affecting rice has also been described by Julia & Dingkuhn (2013), who
found that “warm-humid conditions cause more heat stress than hot-arid conditions”.
Transpiration cooling avoids heat stress in rice by reducing panicle temperatures
(Julia & Dingkuhn, 2013), but if this leads to temperatures below Topr it will reduce
DR.

6.4 Improving rice crop models

Including an optimum temperature for simulating phenology, as proposed with the
AGN-model, is not new. Many rice crop models already include optimum and
maximum temperatures in their phenology subroutine. Commonly used

temperature response functions are 1) Blackman, where DR increases linearly from
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Tease (DR=0) until max. DR at Topr, thereafter at temperatures > Topr DR remains at
max. value (employed in Ceres-rice); 2) Bilinear, where DR increases from Tgase to
max. DR at Topr and at temperatures beyond Toper DR declines linearly to DR=0 at
Tmax (employed in ORYZA2000); 3) Beta, similar to the bilinear function, but with a
bell-shape, thereby modelling a slower change in DR at temperatures near the
cardinal temperatures (van Oort et al., 2011). The AGN phenology model uses the
Blackman temperature response function, or can be seen as a special case of the

bilinear function where Tuax has been set to infinity.

Cardinal temperatures are often assumed at default values (Ceres-rice Tease 9°C, Topr
33°C, no Twax; Oryza Tgase 8°C, Torr 30°C, Tuax 42°C), making it easier to calibrate the
remaining phenology parameter i.e. Tsum (van Oort et al., 2011). However, as van
Oort et al. (2011) show, using default cardinal temperatures often leads to highly
flawed results. Van Oort et al. (2011) propose a new ORYZA2000-compatible
calibration tool that is able to estimate all phenological input parameters
simultaneously: Pheno_opt_rice. This approach is purely statistical, without
incorporating the effects of individual environmental factors. Stuerz et al. (2020)
applied Pheno_opt_rice and found that it was better at simulating f at individual
sites, however it fell short of Stuerz’ method when predicting crop duration across a
wider range of environments, which shows that this purely statistical approach lacks
a certain level of robustness as it does not account for the influence of individual
climatic determinants i.e. environmental factors, while Stuerz-model does with the

inclusion of RH.

What is new with the AGN-model is the way Tease, Torr and Tsum and an RH-
adjustment factor for Tepr are calibrated simultaneously based on time from sowing
to flowering, mean air temperature and mean RH over the same period. Adjusting
phenological parameters to RH significantly improves robustness of phenology
modelling over a wide range of environments. It should be quite easy to incorporate
an RH-adjustment factor for cardinal temperatures into the phenology subroutine of
existing rice crop models as the formulas are relatively easy and do not require much

calculation time.
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6.5 Future research

The data collected for this project by AfricaRice is a magnificent data source. It holds
much more information than what has been analysed and presented in this thesis.
There is e.g. data on grain and straw yield and yield separation data (ratio and
amount of partially and completely filled grains), which a next researcher could use
to try to understand the interactions between genotype, environment and yield.
There is also data on spikelet sterility, which could be used to improve models of
cold and heat induced spikelet sterility. The data offers the potential to develop a
method to improve Pl date estimation and therefore duration of the reproductive
phase. Once Pl date is known or estimated, photoperiod-sensitivity during PSP can

be included in phenology modelling.

Continuing the path started by this thesis, it is recommended to conduct more RGTs
at environments similar to Ambohibary with regard to temperature. The cardinal
temperatures estimated in this study are highly influenced by four to five data points
-per genotype- from Madagascar. The reliability of the cardinal temperature
estimates would increase if more data from ’‘cooler’ environments could be

incorporated.

Moreover, it would be interesting to dissect the data for E10, where there was clear
G x E interaction affecting some short-duration varieties. What could be the reason
that these genotypes cannot be captured by the AGN-model? Furthermore, it would
be interesting to run existing rice crop models with the cardinal temperatures found
in this study and to see how accurately they can simulate flowering dates. Also, it
would make sense to look at the grain yield and SST data, and to combine those
results with the improved phenology model, to create cropping calendars and
location-specific advice on optimum sowing dates in order to avoid environmental

risks and increase rice yields.

69



7 Conclusion

Genotype by environment interactions affect crop duration of rice. Temperature and
relative humidity are the two main environmental factors influencing this trait, while
daylength was found to be less important than previously stated in literature.
Furthermore it was found that duration from Pl to flowering is not fixed in number of
days nor in number of degree-days. Pl date appears to be influenced by G x E
interactions as well. Genotype-specific cardinal temperatures of the 80 rice varieties
tested during this project were estimated by applying three readily available simple
phenology models from literature, as developed by Summerfield et al. (1992),
Dingkuhn et al. (1995) and Stuerz et al. (2020). Besides these three models, a new
phenology model was developed by Asch and Groot Nibbelink: The AGN-model.
This model is based on a multiple linear regression including both a quadratic
temperature term and relative humidity: DR =a*T?+ b *T + ¢ * RH + d. Cardinal
temperatures are estimated by taking the tangents and including a genotype-
specific RH-adjustment factor resulting in Topr increasing with increasing RH.
Simulations of crop duration are made based on these cardinal temperatures in
combination with daily weather data. With a slope of 0.937, an r2 of 0.938 and RMSE
of 12.3 days when regressing observed versus simulated crop duration, the AGN-
model was found to be better at simulating f than the three tested phenology
models. Therefore it is suggested to include an RH-adjustment factor for optimum
temperature into the phenology subroutines of existing rice growth models. This
should be easily possible for crop modellers proficient in the respective code

languages.

This thesis is a step towards improving rice crop models. It helps creating a better
understanding of the environmental factors affecting phenology and how to
incorporate these to create a better phenology subroutine in rice crop models. This
in turn can be used to improve yield modelling under climate change scenarios, to
create better locally-adapted cropping calendars and to improve decision-support-
tools, such as RiceAdvice, which can provide location-specific advice to farmers and
extension workers on optimum sowing date and suitable varieties, so yields may be

increased without a need for additional external inputs.
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