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Abstract 

Adapting rice production in Sub-Saharan Africa to future challenges such as climate 

change and maintaining food security requires functional crop models to evaluate 

the potential of a production environment in combination with selected rice 

varieties. The backbone of such models is accurately simulating phenology across a 

wide spectrum of environments.  Rice garden experiments were conducted at five 

of AfricaRice’s research locations with 25 sowing dates (SD): Cotonou, Benin, 2SD; 

Mbe, Ivory Coast, 5SD; Ambohibary, Madagascar, 5SD; Fanaye, Senegal, 7SD; Ruvu, 

Tanzania, 6SD. Days from sowing to flowering (f) were simulated for 80 varieties 

across all these environments using  cardinal temperatures derived from three 

existing phenology models developed by Summerfield et al. (1992), Dingkuhn et al. 

(1995) and Stuerz et al. (2020). The data from this project showed that the 

relationship between development rate (DR) and mean temperature is not linear, as 

assumed in Summerfield’s model, but rather stagnates as temperature increases. 

Therefore a new model was developed (Asch-Groot Nibbelink; AGN) where this 

relationship was captured by fitting a second order regression (𝐷𝑅 = 𝑎 ∗ 𝑇̅2 + 𝑏 ∗ 𝑇̅ +

𝑐 ) and taking two tangents: one horizontal at the vertex and one sloped with 

tangency point where DR is half of DR at the vertex. Base temperature is where DR=0 

while optimum temperature is where the two tangents intersect. Temperature sum 

is the inverse of the slope of the sloped tangent. When regressing residuals 

(simulated f – observed f) against other climatic factors such as photoperiod, 

radiation, vapour pressure deficit, and relative air humidity (RH), it was found that RH 

explained 38,4% of the residuals. Therefore, AGN was adjusted to include a 

genotype-specific RH-adjustment factor resulting in optimum temperatures 

increasing with increasing RH. With a slope of 0.937, an r² of 0.938 and RMSE of 12.3 

days when regressing simulated f against observed f, AGN proofed to simulate 

genotype by environment effects on phenology better than the three tested rice 

phenology models. It is therefore suggested to include an RH-adjustment factor for 

optimum temperature into the phenology routine of existing rice growth models. 

Keywords: Oryza sativa, phenology, crop duration, temperature,  relative humidity 
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1 Introduction 

Rice (Oryza sativa) is a major staple food crop in Sub-Saharan Africa (SSA). However, 

paddy rice production falls behind global levels and is insufficient to fulfil the current 

demand. In 2019 average global rice yield was 4,631 kg/ha, while average yield in 

SSA was only 2,124 kg/ha, with lowest yields in Middle Africa (970 kg/ha) (FAO, 

2020). In 2018 60% of rice consumption in SSA was covered by regional production 

while 40% was imported, mainly from Asia (AfricaRice, 2018; Saito et al., 2019). 

Besides being a major money drain out of the continent (AfricaRice, 2018), it leaves 

the region vulnerable to food insecurity. As we are currently witnessing with the war 

between Russia and Ukraine, global food trade can be disrupted quickly with 

massive impacts on food prices and availability elsewhere. Increasing rice self-

sufficiency would improve food security and aid economic development in SSA. 

Rice demand is expected to increase over the coming decades due to population 

growth. Currently 1.1 billion people live in SSA. This is expected to double by 2050 

and to rise to around 3 billion by 2075 (United Nations, 2022). Moreover, climate 

change will result in more extreme weather events and prolonged periods of 

drought, thus challenging food production even further. 

Crop modelling has the potential to positively contribute to food and nutritional 

security worldwide (Reynolds et al., 2018). Adapting rice production in SSA to future 

challenges such as climate change and maintaining food security requires well-

functioning rice growth models to evaluate the potential of a production 

environment in combination with selected rice varieties. The backbone of such crop 

growth models is accurately simulating phenology, i.e. the timing of periodic growth 

events such as emergence, flowering and maturity and how these are influenced by 

the environment. Climate change makes model predictions less accurate if the 

underlying environmental factors influencing phenology and genotype by 

environment (G x E) interactions are not well understood and incorporated into the 

models (Stuerz et al., 2020).  

Rice development is mainly influenced by temperature and photoperiod (Dingkuhn 

et al., 1995; Summerfield et al., 1992). Crop duration can be simulated using 
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cardinal temperatures: a base temperature (TBASE), below which there is no 

development; an optimum temperature (TOPT), where development rate is highest; 

a maximum temperature (TMAX), above which there is no development; and 

temperature sum (TSUM), the number of accumulated heat units i.e. degree-days a 

plant requires to complete a phenological phase. These phenological parameters 

are assumed to be genetically fixed and thus should not change when grown under 

different environmental conditions (Dingkuhn et al., 1995). Accurate simulation of 

crop duration depends on the phenology model applied and on the environments 

in which the photothermal constants were determined. For better estimation of 

cardinal temperatures, a given genotype should be grown in a wide range of 

environments. 

Cardinal temperatures are used in rice growth models (e.g. ORYZA, CERES-RICE) in 

combination with weather data to simulate crop duration. This can be used to create 

cropping calendars and advice on an optimum sowing window to increase 

production levels. This can be applied in e.g. decision-support tools. An example of 

such a decision-support tool is RiceAdvice, developed by the Africa Rice Center 

(AfricaRice). This smartphone app has been designed to provide location-specific 

advice to farmers and extension agents on nutrient management, cropping 

calendars and good agricultural practices (RiceAdvice, 2022). Being able to 

accurately model phenology over a wider range of environments, can be used to 

improve accuracy and applicability of such tools.  
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2 Hypothesis and Research Objectives  

A project was conducted between 2013 and 2017 where 80 rice varieties with 

diverse genetic backgrounds and characteristics were grown in rice garden trials. 

These varieties were exposed to a wide range of photo-thermal environments by 

planting them at different seasons and at five locations across Sub-Saharan Africa, 

while management was the same in each of the 25 environments. This study is based 

on data collected during that project. 

The hypothesis at the basis of this thesis is that photothermal responses to the 

environment are genetically fixed. Therefore, cardinal temperatures can be derived, 

and crop duration can be estimated using phenological models. 

Adapting rice production in Sub-Saharan Africa to future challenges such as climate 

change and maintaining food security requires functional crop models to evaluate 

the potential of a production environment in combination with selected rice 

varieties. The backbone of such models is accurately simulating phenology across a 

wide spectrum of environments. Therefore, the research objectives are:  

1. To analyse how genotype by environment interactions affect rice phenology 

2. To estimate genotype-specific cardinal temperatures of 80 rice varieties 

3. To suggest improvements for rice phenology models 
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3 Literature review 

3.1 Rice Phenology 

Phenology is the study of plant growth and development regarding the timing of 

the various developmental stages. The life cycle of a rice crop is illustrated in figure 

1. A rice plant’s development can be divided into three phenological phases 

(Vergara, 1991): 

1. Vegetative phase (VP): From sowing to panicle initiation 

2. Reproductive phase (RP): From panicle initiation to flowering 

3. Ripening phase (RIP): From flowering to maturity 

 

Figure 1: Rice crop life cycle divided in phenological phases. Adapted from (Aguilar, 2019). 

The vegetative phase starts with sowing, followed by germination, leaf emergence, 

tillering, stem elongation, increase in biomass and ends with panicle initiation (PI). 

This phase is the main source of variation in crop duration. Duration of VP is mainly 

influenced by temperature experienced by the rice plant at the meristem and 

daylength i.e. photoperiod (PP) (Dingkuhn et al., 1995; Summerfield et al., 1992; 

Vergara, 1991). However, it has also been reported that relative air humidity (RH) is 

negatively correlated with crop duration (Stuerz et al., 2020). 

VP consists of a basic vegetative phase (BVP) and a photoperiod sensitive phase 

(PSP). If during BVP a genotype-specific number of heat units (TSUM) are accumulated 

and PP conditions are favourable, the rice plant will proceed to panicle initiation and 
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the reproductive phase. Rice is, like many tropical species, a short-day plant. That 

means that for PP-sensitive plants flowering is induced when PP falls below a certain 

threshold . During long days, PSP is extended and flowering is delayed. However, 

not all genotypes are sensitive to daylength.  

The reproductive phase starts with PI, encompasses booting and heading stage and 

ends with flowering. This phase typically lasts 30 – 35 days (IRRI, n.d.; Vergara, 1991). 

During booting the plant is most sensitive to cold and heat spells, causing spikelet 

sterility and thereby reducing yields (Dingkuhn, 1995; Jagadish et al., 2007; 

Shrestha et al., 2013).   

During the ripening phase grains increase in size and weight. Ripening starts with 

flowering, followed by the milky and doughy stage and ends with physiological 

maturity, when the seeds have become hard and dry and are ready to be harvested. 

RIP is reported to be relatively constant at about 30 days (IRRI, n.d.; Vergara, 1991). 

However, in temperate and high-altitude regions, RP and RIP may take twice as long 

to complete (Vergara, 1991).  

3.2 Genotype by Environment Interactions 

The phenotype of any plant is the result of the genotype, the environment and its 

interactions. Phenotypic value can thus be understood as the sum of genotypic 

value, the environmental  influence and the interactions of these: 𝑃 = 𝐺 + 𝐸 + 𝐺 ∗ 𝐸.  

Environmental factors can be divided into a) fixed factors, which are defined by the 

location and experimental setup, such as location, altitude, soil, fertilization, weed 

and pest management; and b) random factors, such as weather conditions, drought, 

spontaneous pest outbreaks. The environment influences certain traits, one of them 

being crop duration. E.g. in one environment a rice plant may take 90 days to reach 

flowering, while in another environment it takes 110 days. The genotype influences 

crop duration as well: some genotypes are typical short-duration varieties, while 

others are typical long-duration varieties. On top of this, there are G x E interactions.  
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Without G x E interactions, the best genotype in one environment, would be the best 

in all environments and the difference between the genotypes would remain equal. 

However, in reality this is not the case. As illustrated in figure 2, crop duration of 

genotype A and B differs from one environment to the other.  

The difference in crop duration between genotype A and B does not remain equal: 

at E1 the difference in crop duration is just 1 day, while at E2 the difference is 7 days 

and at E3 the ranking even changes. At E3 genotype A takes longer to reach 

flowering than genotype B. This is called a cross-over effect, or quantitative 

interaction (Bernardo, 2010). A specific environmental difference may have a greater 

effect on some genotypes than on others. The greater the effect, the more sensitive 

this genotype is to the environment (Bernardo, 2010). These interactions do not only 

complicate selection of superior genotypes for plant breeders, since it limits the 

association between phenotypic and genotypic values (Romagosa et al., 1993), but 

It also complicates phenological modelling.  

The biological basis of G x E interactions is complex, as usually many genes are 

involved. A trait such as crop duration is the result of a series of biochemical 

Figure 2: Genotype by Environment interactions affecting crop duration. Data from Rice 
Garden Trials. Genotype A is WITA 4 (V5), Genotype B is WAB 2101-WAC1-1-TGR5-
WAT B6 (V38). Environments correspond to E1-E4. 
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reactions and interactions within the plant initiated by genes, modified and 

controlled by other genes and by the external environment (Romagosa et al., 1993). 

Some researcher therefore try to link the genes to phenology through genome-wide 

association studies to find the QTL linked to phenological parameters (Dingkuhn et 

al., 2017). 

When individuals of different genotypes are grown in specific environments, the G 

x E interaction can be studied in more detail. When environmental factors are 

known, the influence of these individual factors can be studied. In this study the 

meteorological data is known, which allows us to study the influence of these factors 

on crop duration. 

3.3 Rice crop models 

Rice crop models e.g. ORYZA, CERES-RICE and APSIM are complex models built on 

several subroutines. There are subroutines for e.g. yield, spikelet sterility, soil 

interactions, nitrogen limitation, water balance, and of course for phenology. 

RIDEV2 for example has a subroutine dedicated to calculating water temperature, 

as this is the temperature the rice plant experiences for the majority of time to 

flowering (Dingkuhn et al., 2017). This is used to calculate physiological temperature 

and subsequently to simulate crop duration. 

Crop models have been combined and improved over the years creating new 

models, with subroutines tailored to different applications. A comprehensive 

overview of the history of rice crop models has been given by van Oort & Dingkuhn 

(2021), figure 3. 

ORYZA is one of the major rice crop models. The original ORYZA1 model was 

developed by (Kropff et al., 1994) and written in the code language FORTRAN 

(Bouman et al., 2001). RIDEV1 and RIDEV2 are able to model rice development and 

spikelet sterility and are therefore suitable for creating cropping calendars, but not 

for modelling yield (Dingkuhn et al., 2014). ORYZA1 was further developed to 

ORYZA2000, which was then combined with RIDEV2 creating version ORYZAv2n14, 

which is able to model heat and cold-induced spikelet sterility (van Oort et al., 2015).  
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3.4 Phenology models 

It is important to understand the difference between crop models, based on several 

subroutines, and the simpler phenology models, which are used to simulate timing 

of different phenological phases and crop duration and form the backbone of these 

crop models. In this thesis three readily available simple phenology models are 

compared (Dingkuhn et al., 1995; Stuerz et al., 2020; Summerfield et al., 1992).  

3.4.1 Summerfield 

Summerfield et al. (1992) conducted pot experiments with 16 diverse rice 

genotypes grown under 13 different photo-thermal regimes in controlled-

environment growth chambers. They found that if rice was grown in 11.5h days and 

at sub-optimal temperatures the rate of development from sowing to flowering was 

a linear function of both temperature and photoperiod, without interaction between 

these two factors. The rate of progress, or development rate (DR) is the inverse of 

the time in days from sowing to flowering (f):  

Figure 3: Brief historical overview  of rice models. Source: van Oort & Dingkuhn, 2021 



 

9 
 

(1)      𝐷𝑅 = 1/𝑓  

This resulted in the phenology model: 

(2)       𝐷𝑅 = 𝑎 ∗ 𝑇̅ + 𝑏 ∗  𝑃𝑃̅̅ ̅̅ + 𝑐  

Where 𝑇̅ is the mean diurnal air temperature (°C), 𝑃𝑃̅̅ ̅̅  is the photoperiod (h d-1) over 

the period from sowing to flowering and a, b, and c are genotype-specific constants. 

b typically has a negative value in short-day plants, such as rice.  

In PP-insensitive plants, in environments where PP is maintained constant 

throughout the growing period and for PP-sensitive plants where daylength is 

maintained below the critical photoperiod, which is genotype-specific but generally 

around 11,5 h, the photoperiod term can be deleted from the equation, which 

results in the simplified phenology model: 

(3)       𝐷𝑅 = 𝑎 ∗ 𝑇̅ + 𝑏    

This relationship is only linear if two conditions are met: a) the minimum daily 

temperature experienced by the plant is not below TBASE; and b) the warmest 

temperatures do not exceed TOPT.  

The base temperature is where DR = 0. Below this temperature, there is no 

development in the rice plant and no heat units are accumulated. When regressing 

mean temperature on the x-axis against DR on the y-axis, the base temperature is 

the intersect with the x-axis. This can be calculated as: 

(4)      𝑇𝑏𝑎𝑠𝑒 =  −𝑏/𝑎   

The temperature sum (TSUM) is the genotype-specific amount of heat units i.e. 

degree-days above TBASE required for flowering to occur and is calculated as: 

(5)      𝑇𝑆𝑈𝑀 = 1/𝑎   

 

3.4.2 Dingkuhn  

Dingkuhn et al. (1995) developed a simple model for photothermal effects on 

flowering to explain variations in crop duration, based on air temperature. 
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Genotype-specific cardinal temperatures were quantified by linear regression of the 

sum of average daily air temperature against observed f across environments: 

(6)     𝐷𝐷 =  𝑇𝑏𝑎𝑠𝑒 ∗ 𝑓 + 𝑇𝑆𝑈𝑀  

Where 𝐷𝐷 is the sum of the average daily air temperature > 0°C from sowing to 

flowering, i.e. degree-days [°Cd]. From this regression it follows that TBASE is the slope 

of the regression line and TSUM is the intercept. This equation only holds if 

temperatures reflect the temperatures experienced by the plant and if PP is either 

corrected for, or insignificant.  

Development rate can be expressed as the number of heat units experienced during 

a day divided by the number of heat units required for flowering: 

(7)      𝐷𝑅 =  
𝑇𝑎𝑣−𝑇𝑏𝑎𝑠𝑒

𝑇𝑆𝑈𝑀
  

The development stage (DS) ranges from 0 at sowing to 1 at flowering (Penning de 

Vries et al., 1989). Since DR is the inverse of f, it follows that summing the daily 

development rate steps will give DS = 1 when flowering is reached: 

(8)       𝐷𝑆 =  ∑𝐷𝑅  

The fit of the model calibration and thus of the cardinal temperatures was tested by 

dividing observed f by simulated f. Dingkuhn et al. (1995) found that prediction 

errors following from the simple model only based on thermal effects, could be 

partially explained by daylength at PI. Incorporating PPPI into eqn 7 lead to:  

(9)     𝐷𝑅 =
𝑇𝑎𝑣−𝑇𝑏𝑎𝑠𝑒

𝑇𝑆𝑈𝑀11∗(1+𝐶𝑃𝑃∗(𝑃𝑃𝑝𝑖−11))
  

𝑇𝑆𝑈𝑀11 are the sum of heat units required until flowering at PP = 11h. CPP is the slope 

constant for photoperiodism. PPPI is the photoperiod at PI, estimated as 30 days 

before heading. 

3.4.3 Stuerz 

Currently existing phenology models based on photoperiod and temperature often 

have reduced replicability beyond the environments they have been calibrated for 

(Stuerz et al., 2020). In order to increase applicability of phenology models to a wider 
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range of environments, Stuerz et al. (2020) looked at which environmental factors 

i.e. climatic determinants, could explain differences in crop duration between 

environments. They tested the international test variety IR 64 at eight sites at in total 

87 sowing dates, covering the complete environmental range where rice is 

commonly produced.  

Stuerz et al. (2020) first applied eqn 3 to their data and calculated crop duration as 

the inverse of DR. They subsequently regressed residuals (simulated f – observed f) 

against a range of climatic determinants. Stuerz et al. (2020) found that mean relative 

air humidity is negatively correlated with the residuals, indicating that low RH 

reduces DR and increases f. They corrected the crop duration for the effect of RH. 

Time to flowering was not simulated using cardinal temperatures.  
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4 Materials and Methods 

4.1 Environments 

4.1.1 Locations 

This experiment was conducted at five of AfricaRice’s research locations across SSA: 

Fanaye in Senegal (16.54N, -15.19W, altitude 10m asl), Cotonou in Benin (6.42N, 

2.33E, altitude 27m asl), Mbé in Ivory Coast (7.88N, -5.11W, altitude 273m asl), Ruvu 

in Tanzania (-6.72S, 38.67E, altitude 29m asl) and Ambohibary in Madagascar (-

19.63S, 47.14E, altitude  1645m asl), see figure 4.  

4.1.2 Sowing dates 

At each of the five locations the trial was repeated at different sowing dates (SD) 

between 2013 and 2017. In total there were 25 sowing dates: Cotonou, Benin, 2SD; 

Mbe, Ivory Coast, 5SD; Ambohibary, Madagascar, 5SD; Fanaye, Senegal, 7SD; Ruvu, 

Tanzania, 6SD.  

Figure 4: Rice Garden Trial Sites. Map source: Google Maps 
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An environment is a general term that covers different spatial, temporal and 

management conditions under which a plant is grown (Romagosa et al., 1993), so 

each SD is a different environment. The environments were chosen to cover a wide 

range of environmental conditions (table 1). 

Table 1: Description of environments incl. general weather conditions during growth season. Env. is 
environment. Lat is latitude; Long is longitude, both given in degrees; alt. is altitude in m asl. 

Env Country Site Lat Long Alt Sowing date Weather conditions 

E1 Benin Cotonou 6.42 2.33 27 20-9-2013 Warm, humid 

E2 Benin Cotonou 6.42 2.33 27 8-8-2014 Warm, wet 

E3 Ivory Coast Mbe 7.88 -5.11 273 29-5-2014 Warm, humid 

E4 Ivory Coast Mbe 7.88 -5.11 273 1-11-2014 Warm days, cool 

nights, humid to arid 

E5 Ivory Coast Mbe 7.88 -5.11 273 6-3-2015 Warm, humid 

E6 Ivory Coast Mbe 7.88 -5.11 273 3-6-2015 Warm, humid 

E7 Ivory Coast Mbe 7.88 -5.11 273 2-11-2015 Warm days, cool 

nights, humid to arid 

E8 Madagascar Ambohibary -19.63 47.15 1645 7-11-2015 Cool, humid 

E9 Madagascar Ambohibary -19.63 47.15 1645 7-1-2016 Cool, humid 

E10 Madagascar Ambohibary -19.63 47.15 1645 15-2-2016 Cold, humid 

E11 Madagascar Ambohibary -19.63 47.15 1645 12-8-2016 Cool, arid to humid 

E12 Madagascar Ambohibary -19.63 47.15 1645 14-10-2016 Cool, humid 

E13 Senegal Fanaye 16.54 -15.19 10 13-3-2014 Very hot, very arid 

E14 Senegal Fanaye 16.54 -15.19 10 27-7-2014 Very hot, arid to 

humid 

E15 Senegal Fanaye 16.54 -15.19 10 28-10-2014 Hot days, cool nights, 

very arid 

E16 Senegal Fanaye 16.54 -15.19 10 26-1-2015 Hot, very arid 

E17 Senegal Fanaye 16.54 -15.19 10 27-2-2015 Very hot, very arid 

E18 Senegal Fanaye 16.54 -15.19 10 16-7-2015 Hot, humid 

E19 Senegal Fanaye 16.54 -15.19 10 16-10-2015 Hot days, cool nights, 

very arid 

E20 Tanzania Ruvu -6.72 38.67 29 13-3-2014 Warm, wet 

E21 Tanzania Ruvu -6.72 38.67 29 5-6-2014 Warm, arid 

E22 Tanzania Ruvu -6.72 38.67 29 15-8-2014 Warm, arid 

E23 Tanzania Ruvu -6.72 38.67 29 11-3-2015 Warm, wet 

E24 Tanzania Ruvu -6.72 38.67 29 18-5-2015 Warm, humid to dry 

E25 Tanzania Ruvu -6.72 38.67 29 22-10-2015 Warm, humid 

4.1.3 Weather conditions 

The weather graphs (figure 5) show the wide range in temperature, precipitation, 

RH, solar radiation and PP between the sites and sowing dates.  
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Ambohibary, with its high altitude and furthest distance to the equator, is cooler than 

other sites with occasional night frost during winter season and has greatest 

variation in daylength over the year. Fanaye has the most extreme hot temperatures 

with large variation between diurnal minimum and maximum temperatures. It is also 

the driest site with RH dropping regularly below 20% during the dry season.   

Figure 5: Weather graphs of Cotonou, Benin (A); Mbe, Ivory Coast (B); Ambohibary, Madagascar (C); 
Fanaye, Senegal (D); and Ruvu, Tanzania (E). The black, dark grey and medium grey lines visualise 
maximum, mean and minimum daily temperature [°C]. The solid black line that changes with monthly 
steps is the mean solar radiation [MJ*m-2*d-1]. The dashed black sinus-shaped line is photoperiod in 
hours. The dotted turquoise line represents daily mean relative air humidity [%]. Blue bars represent 
precipitation [mm]. For certain dates, rainfall exceeded 100mm: Cotonou 26/02/2014 122mm; 
Ambihibary 01/02/2017 109mm; Ruvu 11/04/2014 103mm. Black triangles at the bottom indicate 
sowing dates. 
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4.2 Genetic material 

Eighty rice genotypes were tested during this project. A table with the characteristics 

of the genetic material including variety code, variety name, breeding line, country 

of origin, parents, species, subspecies and the production system is given in 

appendix I. Some varieties are interspecific, which means they are a cross between 

Asian rice (O. sativa) and African rice (O. glaberrima). Some genotypes are not 

official varieties, but rather breeding lines that have not (yet) been approved as such. 

However, for simplicity all genotypes will be referred to as ‘varieties’ and have been 

given a variety code number (VCODE). 

Rice is commonly grown in three different production systems: Irrigated lowland (IL), 

rainfed lowland (RL) and rainfed upland (RU). IL is paddy rice, where rice is grown in 

bunded fields in a standing layer of water. RL is rainfed with small bunds i.e. dykes 

around the fields that capture and store rainwater in the field. RU is purely rainfed, 

the fields have no bunds to retain rainwater (Rao et al., 2017). The varieties have 

been bred for these different production systems but were all grown under IL 

conditions during this project.  

In E7 (Ivory coast) and E19 (Senegal) V61 was omitted and 6 ARICA genotypes were 

added to the RGTs. In Madagascar 20 additional genotypes were tested, totalling 

100 genotypes. The genotypes that were tested at few environments have been 

excluded from further analysis.  

4.3 Experimental design and management 

The 80 genotypes were grown in an augmented design with 5 check genotypes and 

5 blocks. Each block within one environment consisted of 20 plots, i.e. 5 check 

genotypes and 15 test genotypes (Figure 6). At each sowing date the test and check 

genotypes were randomized within each block, except for E25, where the design 

had not been randomized.  
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The trials were established by transplanting. Seeds were sown in nursery beds (after 

pre-germination in the trials in Mbé, Fanaye and Ambohibary) and transplanted at 2 

plants per hill after two to three weeks in plots of 1.2 m × 1.6 m (1.92 m2) and a hill 

to hill spacing of 20 x 20 cm, thus totalling 48 rice plants per plot (Figure 7). Plot to 

plot spacing was 40cm. Urea, Triple Super Phosphate and KCl were applied at 

transplanting at rates of 50 kg N ha-1, 30 kg P ha-1 and 50 kg K ha-1. At 20 days after 

transplanting, urea was top-dressed at 75 kg N ha-1. 50 days after transplanting 

another top-dress of urea and KCl was applied at rates of 75 kg N ha-1 and 50 kg K 

ha-1.  

Plots were flooded with the water table adapted to seedling size at transplanting 

and later on maintained at 5 – 10 cm. Weeds were controlled by regular manual 

weeding. Pesticides were applied where necessary and fields were protected by 

nets against birds. Off-types were removed.  

CV-1 TV-n TV-n TV-n TV-n CV-2 TV-n TV-n CV-1 TV-n TV-n TV-n TV-n TV-n CV-2 TV-n TV-n CV-3 TV-n TV-n

TV-n TV-n CV-3 TV-n TV-n TV-n TV-n TV-n TV-n TV-n CV-4 TV-n TV-n TV-n TV-n TV-n TV-n TV-n TV-n CV-2

TV-n TV-n TV-n CV-5 CV-3 TV-n TV-n CV-1 TV-n CV-2 TV-n TV-n TV-n CV-3 TV-n TV-n TV-n TV-n TV-n TV-n

TV-n CV-2 TV-n TV-n TV-n TV-n CV-5 TV-n TV-n TV-n CV-3 TV-n CV-5 TV-n TV-n CV-4 TV-n CV-5 TV-n TV-n

TV-n TV-n TV-n CV-4 TV-n CV-4 TV-n TV-n TV-n TV-n TV-n CV-5 TV-n TV-n CV-1 TV-n CV-1 TV-n TV-n CV-4

Block 1 Block 2 Block 3 Block 4 Block 5Sowing 1

TV-n TV-n CV-4 TV-n CV-5 TV-n TV-n TV-n TV-n CV-3 TV-n TV-n TV-n TV-n TV-n CV-5 TV-n TV-n CV-5 TV-n

CV-3 TV-n TV-n TV-n TV-n CV-1 TV-n TV-n CV-4 TV-n TV-n TV-n CV-2 TV-n TV-n TV-n TV-n CV-2 TV-n TV-n

TV-n CV-1 TV-n TV-n TV-n TV-n TV-n CV-2 TV-n TV-n TV-n CV-2 TV-n CV-4 TV-n CV-3 TV-n TV-n TV-n TV-n

TV-n TV-n TV-n CV-2 TV-n CV-3 TV-n TV-n TV-n TV-n CV-5 TV-n TV-n TV-n CV-1 TV-n TV-n TV-n CV-3 CV-4

CV-5 TV-n TV-n TV-n TV-n TV-n TV-n CV-4 TV-n CV-1 TV-n TV-n TV-n TV-n TV-n TV-n CV-1 TV-n TV-n TV-n

Block 1 Block 2 Block 3 Block 4 Block 5Sowing 2

TV-n TV-n TV-n CV-5 TV-n TV-n TV-n CV-2 TV-n TV-n CV-2 TV-n TV-n TV-n TV-n CV-5 TV-n TV-n TV-n TV-n

CV-2 TV-n TV-n TV-n CV-4 TV-n TV-n TV-n TV-n TV-n TV-n TV-n TV-n TV-n CV-1 TV-n TV-n CV-5 CV-2 TV-n

TV-n TV-n CV-1 TV-n TV-n TV-n TV-n TV-n CV-3 TV-n CV-1 TV-n TV-n CV-2 TV-n TV-n TV-n TV-n TV-n CV-4

CV-4 TV-n TV-n TV-n TV-n CV-1 CV-5 TV-n TV-n TV-n TV-n TV-n TV-n TV-n CV-4 TV-n CV-1 TV-n TV-n TV-n

TV-n TV-n CV-3 TV-n CV-3 TV-n TV-n TV-n TV-n CV-5 TV-n CV-4 CV-3 TV-n TV-n TV-n TV-n CV-3 TV-n TV-n

Block 1 Block 2 Block 3 Block 4 Block 5Sowing 3

Figure 6: Example of a field layout for the Rice Garden plots with different sowing dates of 
different genotypes in an augmented design. Green colours indicate the different replicate 
blocks in each sowing block. TV-n = Test variety where n represents the number of the test 
variety; CV-n = Check variety where n represents the number of the check variety. Check varieties 
are planted in each replicate block (within sowing block), while test varieties are planted only 
once within each sowing block. 
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4.4 Data collection 

4.4.1 Rice garden trials 

Field technicians visited the trials on a daily basis and recorded dates of sowing, 

50% emergence, transplanting, 50% panicle initiation of the main stems (PI), 50% 

heading of all stems, 50% flowering of all stems, 85% maturity and harvest. The date 

of panicle initiation was monitored through destructive observation in six plants of 

each plot. Since the panicle is only visible a number of days after actual PI, five to 

seven days were deducted from the date when PI was first observed. The date of 

50% flowering was recorded as the date at which 50% of the stems in a plot were 

flowering. Dates of 85% maturity and harvest were recorded as well, except for 

Madagascar, where 50% maturity date was recorded. Besides phenological data, 

spikelet sterility and grain separation data were recorded, but not further used for 

this thesis.  

In roughly a quarter of the cases (563 out of 2000) 50% emergence date was not 

registered. Since sowing date was always registered, this was used in further 

phenology analysis. For roughly a quarter (499 out of 2000) PI data was missing. At 

E1, E8, E9, E10, E16, E17 no PI data was collected, at other environments PI data was 

missing for some genotypes. 92 times the flowering date was not observed, either 

because the plots had been damaged or because the variety never reached 

flowering. The latter was the case in the majority of genotypes in E9, where 62 

Figure 7: Rice Garden plot of 1.92 m2 plot with 48 hills of a genotype (24 hills in the border 
lines and 24 hills in the middle of the plot for observations (2 squares of 9 hills for harvest and 
post-harvest observations and 1 line of 6 hills for destructive observations and 1 line of 6 hills 
for destructive observations on panicle initiation). 
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flowering dates were missing. The 18 observed flowering dates were all from short-

duration varieties.  

Besides phenological data, agronomic data on plant height, number of panicles, 

grain yield, straw weight per area and per hill and spikelet sterility was collected. 

Percentage of partially filled grains and weight of empty, partially and completely 

filled grains were recorded as well. This data has not been analysed further in this 

thesis, but it forms an interesting source for further analysis. 

At E1 and E14 there was rat damage, which influenced grain separation data, but 

not phenology data. At E6 there was wind damage and diseased plants, which 

resulted in stunted plant growth. At E20 there was flooding resulting in complete 

submergence which lasted for five days in mid-April, about two weeks after 

transplanting. At E22 there was a bird attack which caused some missing phenology 

and harvest data.  

4.4.2 Microclimate plots 

At three of the research locations (Cotonou, Ruvu and Fanaye) microclimate (MC) 

data was collected. At the MC plots, phenological stages were recorded as in the 

rice garden trials, plus leaf area index was recorded. Additionally, the time of 

flowering for the start, peak and end of flowering were visually inspected and 

recorded every day during the period of panicle emergence (i.e. heading) in Fanaye 

and Cotonou. Inside- and above-canopy temperature and humidity were monitored 

using MINCER devices (Cotonou and Fanaye). Tinytag data loggers were used to 

record water temperature and inside- and above-canopy temperature and humidity 

in Cotonou, Fanaye and Ruvu. However, MC data was often incomplete and of low 

quality due to dysfunctional measurement devices. E.g. for only two environments 

water temperature data was complete. Missing data could not be estimated. Thus, 

MC data was found to be insufficient and not further considered during analysis. 

4.4.3 Meteorological data  

Data on minimum, mean and maximum air temperature; minimum, mean and 

maximum relative air humidity; wind direction and speed; solar radiation and 

precipitation were collected on daily basis from meteorological stations nearby the 
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trial sites. Furthermore, daylength including and excluding twilight and minimum 

and maximum vapor pressure deficit were calculated. Missing data was estimated 

by P. van Oort based on the global yield gap project. Missing TAV was calculated as 

the average of minimum and maximum recorded temperature of that day. Estimated 

data was checked against additional weather data from nearby stations in 

Madagascar and Ivory Coast and was found to be reliable. Since there was missing 

data for all five locations and not for all locations additional weather data from 

nearby weather stations was available, estimated data was kept to be consistent.  

4.5 Data analysis 

4.5.1 Data preparation 

The dataset was prepared for analysis using Microsoft Excel. Data on phenology, 

spikelet sterility and grain yield were collected per trial and merged into one 

overview table. Data on check varieties was averaged, resulting in one data point 

per check variety per environment. Block effect was not taken into account, as this 

was complicated to estimate from the augmented design, would have considerably 

complicated further analysis and is negligible in comparison to differences between 

locations and sowing dates. Variation due to environment is larger than block 

effects, thus including a block effect was not expected to considerably change the 

outcome of the analysis. 

Quality control of the phenology data was performed manually. Data that seemed 

unrealistic or doubtful was marked. Marked data was usually explained during 

further analysis; data that could only be explained as measurement or data entry 

error was omitted (155 PI dates for E13 and E15, explained why in chapter 5.2). 

Based on the phenological data in combination with the meteorological data, new 

variables were calculated per genotype/environment combination, e.g duration, 

DR, dd, mean air temperature, cumulative radiation, mean VPD, mean RH and PP of 

different phenological phases.  
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4.5.2 Analysing phenology models 

Three rice phenology models described in chapter 3.4 were applied to estimate the 

genotype-specific cardinal temperatures and a new phenology model was 

developed. Stuerz’ model was adapted so it could be used to estimate cardinal 

temperatures and include an RH-adjustment factor. f was simulated using the 

cardinal temperatures estimated for the different models and simulated f was 

regressed against observed f. Residuals (sim. f – obs. f) were regressed against 

several environmental factors. The outcome of this regression was used to improve 

the newly developed phenology model. All statistical tests (i.e. regressions, 

ANOVAs) and simulation of flowering dates were performed with SAS software, 

version 9.4 for windows. Significance level was set at α=.05. Complete SAS code is 

given in Appendix II. Data was visualised using SigmaPlot version 12.5. Excel was 

used for data preparation, to compile input data for both SAS and SigmaPlot and to 

compile output tables. 
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5 Results 

5.1 Crop duration 

There is large variation in crop duration between environments and genotypes. 

Chhomrong (V30) had the shortest average crop duration at 81 days, followed 

shortly by V79 (FOFIFA 172) at 83 days. Shortest crop duration was recorded for 

Chhomrong sown September 2013 at Cotonou (E1), where it took only 53 days to 

reach flowering. V38 (WAB 2101-WAC1-1-TGR5-WAT B6) was the genotype with 

longest average crop duration at 129 days. The longest crop duration measured 

during this project was for V27 (K5) sown February 2015 at Ambohibary (E10). E10 

was also the environment with the longest average crop duration at 313 days. Long 

crop durations in this environment can be explained by the fact that rice was sown 

at the start of the cold season with shortening days. This was considerably longer 

than the second longest duration environment: E11 (sown August 2016, 

Ambohibary) with 211 days. Rice sown march 2015 in Mbe had an average crop 

duration of 83 days, followed shortly by E23 (sown March 2015, Ruvu) with an 

average duration of 85 days. All observed crop durations from sowing to flowering 

for the 80 varieties in the 25 environments are presented in Appendix III. 

5.2 Panicle Initiation 

Since PI is difficult to observe, PI data was checked for possible errors. For the 1501 

genotype-environment combinations where both PI and flowering date were 

recorded, days from sowing to PI were regressed against days from sowing to 

flowering, grouped per location (figure 8). In reality, the locations consist of several 

sowing dates, making up different environments. This explains why data from one 

location may appear as several groups of data points.  

If time from PI to flowering would be constant at 30 days, as assumed by Dingkuhn 

et al. (1995), the regression equation would have been 𝑦 = 𝑥 − 30 , while a 

regression equation of 𝑦 = 0.726𝑥 − 5.52 with r²=.818 was found based on our data. 

There are clear differences between locations. Ambohibary has the longest crop 

duration, due to the low temperatures at this high-altitude location. However, with a 
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regression equation of 𝑦 = 0.905𝑥 − 31.6 and an r² of .920, it is actually closest to the 

expected outcome of all locations. PI data at some Senegalese environments 

behaves strangely. These were further investigated by separating the regression 

into individual sowing dates for Fanaye (figure 9). 

At E13 the regression line (𝑦 = −2.12 + 55.64) has a slightly negative slope. For E13 

all PI dates were recorded between 51 and 57 days after sowing, whereas the 

observed flowering dates range from 77 to 134 days. This can only be explained in 

two ways: I) at E13 the length of VP is relatively stable, while RP varies; or II) 

measurement error. The first option is not in line with data observed at other 

environments nor with literature. Since the second option is more likely, PI data of 

E13 was discarded.  

At E15 and to a lesser extend at E14 and E18 PI dates do not follow a normal 

distribution, but rather a stratified pattern. This indicates that PI data was not 

recorded daily, but instead only at certain dates. At E24 for 36 out of 80 genotypes 

Figure 8: Days from sowing to PI regressed against days from sowing to flowering across 
all genotypes and environments. Environments are grouped per location. 

y= 0.726x -5.52 

r² = .818 
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PI date was recorded at 50 days after sowing. At E18 22 PI dates were recorded at 

68 days after sowing. These are strong deviations from a normal distribution. 

However, despite this being likely due to measurement error, it cannot be ruled out 

with 100% certainty that there was a peak in PI on those dates. The PI data for E14, 

E18 and 19 is more or less in line with PI data observed at other locations and was 

therefore kept. PI data from E15 was omitted.  After exclusion of the obviously 

erroneous PI data 1346 PI dates remained in total. A boxplot was made for the 

observed number of days from PI to flowering per environment for all locations 

(figure 10).  

Pooled over genotypes and environments, average time from PI to flowering was 

31.33 ±0.28 days with a standard deviation of 10.37 days. Duration of RP in Ruvu 

(E20-E25) has less variation than at the other locations. Average duration of RP in 

Cotonou (E2) and at E5 in Mbe was similar to observations made in Ruvu. The short 

average durations in Ruvu and Cotonou could be environmentally caused, or it 

Figure 9: Days from sowing to PI regressed against days from sowing to flowering across all 
genotypes for the sowing dates in Fanaye where PI was recorded (E13, E14, E15, E18, E19). 

y=.443x +15.52 

r² = .348 
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could be a biased observation, e.g. the observers always observed PI late. In 

Ambohibary (E11 and E12) RP takes longer than at other sites.  

Next, PI was estimated as 30 days before flowering. Estimated PI date was plotted 

against observed PI date (figure 11). If the simulation would have been accurate, 

data points should approximately fall on a 1:1 line with intercept close to 0 and slope 

close to 1. However, the intercept is -13.92 days and slope is 16.2% off. The 

coefficient of determination is high (r²=.921), suggesting that the correlations 

between the observations are strong and therefore the model assumption might be 

incorrect. The result of estimating PI date as fixed at 30 days before flowering, 

independent of genotype and environment, was therefore found unsatisfactory. 

Next, the amount of heat units accumulated from PI to flowering was calculated to 

check whether RP was fixed in amount of heat units required to complete this phase 

rather than days (figure 12).  

 

  

Figure 10: Boxplot of days from panicle initiation to flowering per environment where 
PI date was recorded. 
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Figure 11: Estimated versus observed days from sowing to PI. PI date estimated as 30 days 
before flowering.  

y= 1.162x -13.92 

r²=.921 

Figure 12: Boxplot of degree-days from PI to flowering per environment where PI date was 
recorded. 
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The mean amount of dd required to complete RP was 771.8±11.4 °Cd with a 

standard deviation of 212.6 °Cd. Expressing duration of RP in thermal time instead 

of in days, brought duration for E11 and E12 in line with other environments. They 

have a similar duration to E7 and shorter duration than E14 when measured in dd. 

Thus RP lasts longer in cool environments in absolute time (days), but not when 

measured in thermal time. E14 sticks out with a significantly higher amount of dd 

required to reach PI than other environments at this location (E18 and E19). This is 

likely the result of measurement error. As discussed before, observed PI dates for 

E14 were doubtful. Variation in duration of RP in Mbe (E3-E7) remains. Duration of 

RP in Ruvu (E20-E25) remains lowest and most stable of all locations. Thus estimating 

PI based on number of degree-days improves results for the cool environments of 

Ambohibary, but not for the other locations.  

Because observation of 50% flowering date is more reliable than observation of 50% 

PI, because there were more observed flowering dates than PI dates (n=1908 versus 

n=1346) and because missing PI dates could not be accurately estimated, it was 

decided to proceed analysis based on f and to leave PI out of further phenology 

modelling.  

5.3 Cardinal temperatures 

In this chapter cardinal temperature estimates for three out of 80 varieties are 

presented: 1) IR64 (V2), the international test variety and a medium-duration variety; 

2) K5 (V27), a long-duration variety; and 3) Chhomrong (V30), a short-duration 

variety. Cardinal temperatures with accompanying regression equations including 

r² and CV for the other 77 varieties are provided in appendix IV.  

5.3.1 Summerfield 

Daylength only influences a rice plant’s DR during PSP. Since PI dates were often 

missing or of doubtful quality and could not be accurately estimated, timing of PSP 

could not be established. Therefore the simple Summerfield-model based only on 

temperature (eqn 3) was applied to estimate TBASE as the intersect with the x-axis (eqn 

4) and TSUM as the inverse of regression slope (eqn 5) (figures 13-15).  



 

28 
 

 

 

y= 0.000506x -0.00264 

r² = .667 

Figure 13: Development rate (1/f) of IR64 versus mean air temperature during this period at 
24 environments (E9 missing) across 5 different sites. 

Figure 14: Development rate (1/f) of K5 versus mean air temperature during this period at 
24 environments (E9 missing) across 5 different sites.  

y= 0.000451*x -0.00226 

r² = .629 



 

29 
 

Chhomrong reaches higher DR and has lower TSUM (1489°Cd) and TBASE (4.64°C) 

compared to IR64 (TSUM =1976°Cd; TBASE=5.22°C) and K5 (TSUM =2219°Cd; 

TBASE=5.01°C). Development of Chhomrong starts at lower temperatures and 

requires less degree-days to reach flowering, resulting in shorter crop duration. 

When looking at all 80 varieties, r² ranges from .447 (V22) to .737 (V34), with average 

r² across all genotypes of .594, this indicates that the regression is not a very good 

fit to the data. Estimated TBASE is low, for some genotypes unrealistically low. For 

three genotypes (V4, V28 and V77) TBASE drops below the freezing point, while 

highest TBASE was 7.92°C.  

DR and mean temperature are lower at Ambohibary than at any other location, for 

every variety. A regression only through the four (IR64 & K5) or five (Chhomrong) 

datapoints at this site would result in a much steeper slope, thus a higher TBASE and 

lower TSUM. DR in Fanaye is consistently lower than at other locations with similar 

mean temperatures. This suggests that Summerfield’s model is not applicable to this 

wide range of environments, including cool to hot and humid to arid conditions. 

  

y= 0.000671*x -0.00311 

r² = .611 

Figure 15: Development rate (1/f) of Chhomrong versus mean air temperature during 
this period at 25 environments across 5 different sites. 
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5.3.2 Dingkuhn 

Since PI date could not be accurately simulated, eqn 6 was applied to estimate TSUM 

as the intersect with the y-axis and TBASE as the slope of this regression (figures 16-

18). Ambohibary, with its long crop duration both in time (days) and thermal time 

(dd) disproportionally influences the regression. creates a leverage point: the effect 

of this single data point with its extreme x-value strongly influences  the complete 

regression. E.g. for IR64 including E10 regression line is 𝑦 = 10.62𝑥 + 1439; r²=.848, 

while without E10 the regression changes to 𝑦 = 10.51𝑥 + 1450 with r²=.640. 

Nevertheless, this phenology model, has a better overall fit than Summerfield with 

an average r² across all genotypes of .772, ranging from .486 (V4) to .921 (V21). At 

Fanaye consistently more dd were required to reach flowering than at other 

locations with similar crop durations. TBASE ranges from 8.90°C (V42) to 10.96°C 

(V18). TSUM has a wide range from 976°Cd in the short-duration variety V79 to 

1825°Cd in V70. In V70 high TSUM is combined with a low TBASE (8.98°C), this explains 

why a variety that ranked 56th in crop duration can still have the highest TSUM, because 

with a low TBASE and without TOPT it is possible to accumulate more dd per day.  

Figure 16: Degree-days from sowing to flowering of IR64 versus number of days from sowing 
to flowering at 24 environments (E9 missing) across 5 different sites.  

y= 10.62x +1439 

r² = .848 
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Figure 18: Degree-days from sowing to flowering of Chhomrong versus number of days from 
sowing to flowering in 25 environments across 5 different sites.  

y= 9.84x +1108 

r² = .678 

Figure 17: Degree-days from sowing to flowering of K5 versus number of days from sowing to 
flowering in 24 environments (E9 missing) across 5 different sites. 

y= 11.85x +1460 

r² = . 885 
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5.3.3 Stuerz 

In this thesis Stuerz’ model was applied in a different way than they did in their paper. 

Nevertheless, since my interpretation of this model is based on their publication and 

the main difference with other phenology models is the inclusion of RH when 

simulating crop duration, it will still be referred to as the Stuerz-model. Whereas they 

corrected the residuals for the effect of RH, here a multiple linear regression (eqn 

10) was applied to get the regression parameters (a, b, and c ) instead: 

(10)    𝐷𝑅 = 𝑎 ∗ 𝑇̅ + 𝑏 ∗ 𝑅𝐻̅̅ ̅̅ + 𝑐 

These regression parameters were used to calculate genotype-specific 

phenological parameters: TSUM, TBASE_0 (base temperature at the theoretical value 

RH=0%) and an RH-adjustment factor (RHADJ). TSUM is calculated as in Summerfield, 

so it remains unaffected by RH. TBASE_0 is calculated as: 

(11)     𝑇𝑏𝑎𝑠𝑒_0 =  −
𝑐

𝑎
 

TBASE is negatively correlated with RH, i.e. in a more humid environment 

development starts at a lower base temperature. This is captured by a genotype-

specific RH-adjustment factor for TBASE: 

(12)    𝑅𝐻𝑎𝑑𝑗 =  −
𝑏

𝑎
 

Equations 11 and 12 were used in combination with average RH to calculate TBASE: 

(13)    𝑇𝑏𝑎𝑠𝑒 =  𝑇𝑏𝑎𝑠𝑒_0 + 𝑅𝐻𝑎𝑑𝑗 ∗ 𝑅𝐻𝑎𝑣 

TBASE depends on genotype-specific TBASE_0, RHADJ and the measured daily RHAV and 

therefore differs from day to day. Figures 19-21 show the resulting regression plane 

of eqn 10 for varieties IR64, K5 and Chhomrong. TBASE decreases with increasing RH. 

According to this model, a rice plant starts developing at lower temperatures in 

humid environments.  
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Figure 20: Multiple linear regression of DR of IR64 versus mean air temperature and mean RH from 
sowing to flowering in 24 environments (E9 missing) across 5 different sites. 

y= 5.54E-04*T + 7.05E-05*RH -8.47E-03 

r² = .858 

Figure 19: Multiple linear regression of DR of K5 versus mean air temperature and mean RH 
from sowing to flowering in 24 environments (E9 missing) across 5 different sites.  

y= 4.98E-04*T + 6.13E-05*RH -8.47E-03 

r² = .801 
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Stuerz’ model is better at capturing f in Fanaye. However, it systematically 

overestimates DR at Ambohibary. This regression model has a better coefficient of 

determination than Summerfield and Dingkuhn with r² ranging from .679 (V16) to 

.923 (V7), with average r²=.827 across all genotypes, suggesting that adding the 

extra explanatory variable RH improves the regression model. 

5.3.4 Asch-Groot Nibbelink 

When regressing DR against mean temperature over the period from sowing to 

flowering following Summerfield’s model, it became apparent that the data does 

not follow a linear pattern. Rather, DR stagnates as average temperatures increase. 

This indicates the existence of a TOPT above which DR no longer increases. To capture 

this, a new simple phenology model was developed by Asch and Groot Nibbelink: 

the Asch-Groot Nibbelink (AGN) model. To find the cardinal temperatures, a second 

order regression was performed: 

(14)     𝐷𝑅 = 𝑎 ∗ 𝑇̅2 + 𝑏 ∗ 𝑇̅ + 𝑐 

Based on this regression two tangents were taken, creating a broken-stick model 

where the intersect with the x-axis equals the base temperature and the breaking 

Figure 21: Multiple linear regression of DR of Chhomrong versus mean air temperature 
and mean RH from sowing to flowering in 25 environments across 5 different sites. 

y= 7.49E-04*T + 1.05E-04*RH -1.20E-02 

r² = .825 
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point equals the optimum temperature. The first tangent is horizontal touching the 

vertex. The vertex x-coordinate (h) were calculated as 

(15)     ℎ =  −
𝑏

2𝑎
 

The vertex y-coordinate (k) was found by applying h into eqn 14: 

(16)     𝑘 = 𝑎 ∗ ℎ2 + 𝑏 ∗ ℎ + 𝑐.  

The horizontal tangent is thus equal to 𝐷𝑅 = 𝑘. The second, sloped, tangent was 

taken where DR was halfway between 0 and the maximum DR. The tangency point’s 

y-coordinate was  

(17)     𝑦𝑡𝑎𝑛 = 0.5 ∗ 𝑘 

Tangency point’s x-coordinate was found by rewriting eqn 14 and substituting DR 

by 𝑦𝑡𝑎𝑛:  

(18)     𝑥𝑡𝑎𝑛 =
√−𝑏+(𝑏2−(4𝑎∗(𝑐−𝑦𝑡𝑎𝑛)))

2𝑎
. 

The tangent line equation is: 

(19)     𝐷𝑅 = 𝑚 ∗ 𝑇̅ + 𝑐𝑡𝑎𝑛 

Where 𝑚 is the slope of the tangent line, calculated as 

(20)     𝑚 = 2𝑎 ∗ 𝑥𝑡𝑎𝑛 + 𝑏.  

𝐶𝑡𝑎𝑛  is the constant of the sloped tangent: 

(21)     𝑐𝑡𝑎𝑛 = 𝑦𝑡𝑎𝑛 − (𝑚 ∗ 𝑥𝑡𝑎𝑛) 

The intersect of the sloped tangent with the x-axis is taken to be the base 

temperature: 

(22)     𝑇𝑏𝑎𝑠𝑒 = −
𝑐𝑡𝑎𝑛

𝑚
 

The optimum temperature is the intersect of the two tangents: 

(23)     𝑇𝑜𝑝𝑡 =
𝑘−c𝑡𝑎𝑛

𝑚
 

TSUM is the inverse of the slope of the sloped tangent: 
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(24)     𝑇𝑆𝑈𝑀 =
1

𝑚
 

The results of this model as applied to IR64, K5 and Chhomrong are visualised in 

figures 22-24, where the black line is the second order regression and the grey lines 

are the tangents forming the broken-stick model.  

  

With coefficients of determination ranging from .591 (V28) to .907 (V44) and an 

average of r²=.759, this second order regression equation is a significant 

improvement compared to Summerfield and has similar fit to Dingkuhn, while 

Stuerz’ regression still has a better fit to the data. The AGN-model captures 

Ambohibary’s data better, although it overestimates DR for most sowing dates in 

Fanaye. TBASE estimates are rather high, ranging between 10.74°C (V78) and 13.95°C 

(V39).  

Figure 22: Development rate of IR64 versus mean air temperature from sowing to 
flowering in 24 environments (E9 missing)  

y= -4.98E-05*x² + 2.81E-03*x -2.84E-02 

r² = .798 
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Figure 23: Development rate of K5 versus mean air temperature from sowing to flowering 
in 24 environments (E9 missing) 

y= -6.21E-05*x² + 3.35E-03*x -3.51E-02 

r² = .853 

Figure 24: Development rate of Chhomrong versus mean air temperature from sowing to 
flowering in 25 environments 

y= -5.69E-05*x² + 3.28E-03*x -3.20E-02 

r² = .680 
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5.3.5 Cardinal Temperature Estimates  

Cardinal temperature estimates for IR64, K5 and Chhomrong (table 2) differ 

between genotypes and phenology models applied. TSUM estimates are highest 

under Summerfield, which goes hand in hand with this model resulting in lowest 

TBASE estimates. If TBASE is low, more degree-days are accumulated per day. Stuerz 

has high TSUM estimates combined with high TBASE estimates at RH=0%. However, the 

rice plants always experience a lower TBASE, as it reduces with RH and RH is never 

equal to 0%. Air humidity typically ranges between 50 to 100%, depending on the 

environment. Although in Fanaye, Senegal, during 41 days an average air humidity 

of less than 10% was recorded. Nevertheless, according to our findings of applying 

Stuerz’ model, the rice plant will experience base temperatures ranging between 

2°C to 9°C on the vast majority of days, depending on genotype and environment. 

Even the cool Madagascar environments average temperatures are well above 9°C 

on most days. The introduction of TOPT in the AGN-model limits the amount of 

degree-days a plant can collect per day. This is reflected by lower TSUM estimates. 

Cardinal temperature estimates found by applying the Dingkuhn-model are 

moderate. They are not extremely high or low compared to the results of the other 

phenology models. 

Table 2: Cardinal temperature estimates for IR64 (V2), K5 (V27) and Chhomrong (V30) using four 
different phenology models 

Variety Summerfield Dingkuhn Stuerz AGN 

 TSUM TBASE TSUM TBASE TSUM TBASE_0 RHADJ TSUM TBASE TOPT 

IR64 1976 5.22 1439 10.62 1807 15.30 -0.127 944 12.26 22.90 

K5 2219 5.01 1460 11.85 2007 15.04 -0.123 891 13.42 22.46 

Chhomrong 1489 4.64 1108 9.84 1335 16.05 -0.140 758 11.44 23.03 

 

The short duration variety Chhomrong always has the lowest TSUM and for three out 

of four models the lowest TBASE. Only in Stuerz’ model Chhomrong has the highest 

TBASE, but at the same time it has the highest RH-adjustment factor. Thus it is more 

sensitive to RH and in environments with a high RH it actually has a lower TBASE than 

the other varieties. Chhomrong also has the highest TOPT, thus it is able to collect 

more degree-days per day than any of the other varieties. The long duration variety 

K5 has the highest TSUM for three out of four models. TSUM found with AGN is highest 
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for IR64. However, since IR64 has lower TBASE and higher TOPT than K5, it can collect 

more degree-days per day and thus will be able to reach TSUM and therefore 

flowering sooner.  

5.4 Simulated Flowering Dates 

Genotype-specific cardinal temperatures were used in combination with weather 

data to simulate flowering dates. This was done by calculating daily physiological 

temperature (TPHYS), the degree-days a rice plant can use for development. TPHYS was 

calculated as the daily average temperature (TAV) above TBASE and below TOPT, with 

TBASE adjusted for daily RH: 

(25)   𝑇𝑝ℎ𝑦𝑠 = max (min(𝑇𝑜𝑝𝑡, 𝑇𝑎𝑣) − (𝑇𝑏𝑎𝑠𝑒 + 𝑅𝐻𝑎𝑑𝑗 ∗ 𝑅𝐻𝑎𝑣), 0) 

For those models without TOPT, TOPT was set to 99°C. As this temperature is never 

reached in field conditions, it is effectively the same as applying no TOPT. For models 

without RH-adjustment, this factor was set to 0, so no correction for RH was made to 

TBASE. The max-term ensures that if 𝑇𝑎𝑣< 𝑇𝑏𝑎𝑠𝑒, TPHYS cannot become negative and no 

degree-days are subtracted, since development does not reverse. Note that TAV and 

𝑅𝐻𝑎𝑣 are daily averages, while 𝑇̅ and 𝑅𝐻̅̅ ̅̅  are averages of the observed time from 

sowing to flowering 

Next, daily TPHYS was summed from the sowing date until the date that TSUM was 

reached. This date was returned as the simulated flowering date. This was done for 

each genotype x environment combination and for each phenological model. 

Simulated flowering dates were regressed versus observed flowering dates to 

analyse the accuracy of the phenology models (figures 26-37). 

5.4.1 Summerfield 

The Summerfield-model performs well when simulating f for Cotonou, but 

underestimates f in Fanaye and in Ambohibary (figure 25). The regression is far from 

a 1:1 line (y=0.555+45.45), but yet a high correlation (r²=.831), which suggests that  
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the Summerfield-model assumptions might be incorrect, or the limits within which 

this model works well have been transgressed.  

Figure 26, presenting the individual sowing dates at Ambohibary, shows  that this 

model is able to simulate E8, sown November 2015, quite well. However, for the 

other sowing dates, especially E10 (sown February 2016), Summerfield’s model 

cannot accurately simulate days to flowering. When looking at the individual sowing 

dates in Fanaye (figure 27), E14 (sown July 2014) and E18 (sown July 2015) are 

captured relatively well, but there is systematic underestimation of time to flowering 

at the other environments (E13, E15-E17, E19), resulting in a skewed overall 

regression line for this location. 

 

  

Figure 25: Observed versus simulated days to flowering following Summerfield-model 
across all environments and genotypes.  

y= 0.555x +45.54 

r²=.831 
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Figure 27: Observed versus simulated days to flowering following Summerfield-
model for sowing dates in Fanaye, Senegal (E13-E19) across all genotypes.  

y= 0.623x + 24.77 

r² = .775 

Figure 26: Observed versus simulated days to flowering following Summerfield-model for 
sowing dates in Ambohibary, Madagascar (E8-E12) across all genotypes. 

y = 0,402x + 85.68 

r² = .870 
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5.4.2 Dingkuhn 

The Dingkuhn-model results in quite accurate simulations of time to flowering in 

Cotonou, Mbe and Ruvu (figure 28). However, there is large variation in accuracy of 

crop duration simulation in Ambohibary and a systematic underestimation in Fanaye 

across all sowing dates (figure 30). Looking at the individual sowing dates at 

Ambohibary (figure 29) it can be observed that Dingkuhn is not able to accurately 

capture any of the individual sowing dates, with a particularly strong overestimation 

of f at E8 and a great scatter at E9. Interestingly, most flowering dates for E10 are 

close to the 1:1 line, but for some genotypes observed f was much shorter than the 

model predicts, which skews the complete regression.  

 

 

 

 

Figure 28: Observed versus simulated days to flowering following Dingkuhn-model across 
all environments and genotypes. 

y= 1.058x - 0.677 

r² = .762 
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Figure 30: Observed vs simulated days to flowering following Dingkuhn for 
Ambohibary (E8-E12) across all genotypes  

y= 0.580x + 127.24  

r² = .511 

Figure 29: Observed versus simulated days to flowering following Dingkuhn for all 
sowing dates in Fanaye, Senegal (E13-E19) across all genotypes. 

y= 0.750x + 7.86 

r² = .770 
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5.4.3 Stuerz 

The Stuerz-model was better able to simulate f in Senegal than the other tested 

models (figure 31). However it struggles to capture the crop duration at some of 

Ambohibary’s sowing dates, which skews the overall regression line downwards. 

When looking at the individual sowing dates in Ambohibary (figure 32), it can be 

seen that Stuerz’ model is still able to capture E8, but overestimates f at the other 

sowing dates. Especially at E10 the simulated crop duration is too short, thus this 

environment again forms leverage points and suggests that Stuerz’ model cannot 

capture this extreme environment. At Fanaye at all sowing dates, Stuerz’ model 

simulates f better than Summerfield, Dingkuhn or AGN (figure 33). 

  

Figure 31: Observed versus simulated days to flowering following Stuerz-model 
across all environments and genotypes.  

y = 0.562x + 43.00 

r² = .800 
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Figure 33: Observed versus simulated days to flowering following Stuerz-model for 
all sowing dates in Ambohibary, Madagascar (E8-E12) across all genotypes.  

y = 0.351x + 87.92 

r² = .755 

Figure 32: Observed versus simulated days to flowering following Stuerz-model 
for all sowing dates in Fanaye, Senegal (E13-E19) across all genotypes.  

y = 1.283x -31.17 

r² = .864 
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5.4.4 Asch-Groot Nibbelink 

The simple AGN-model is a great improvement on the Summerfield-model with a 

slope that is 11.4% off and the highest r² at .900 of the tested phenology models 

(figure 34). This model is best at simulating crop duration in the cool environment of 

Ambohibary, however it was unable to capture some genotypes at E9 and E10 

(figure 35). There is a severe systematic underestimation of crop duration in Fanaye 

(figure 36), with a slope of 0.345 and an r² of .473. It Is able to simulate time to 

flowering for E14 and E18 very accurately actually, however, this model severely 

underestimates f for E13, E15-E17 and E19. 

Figure 34: Observed versus simulated days to flowering following simple AGN-
model across all environments and genotypes.  

y = 0.886x + 9.20 

r² = .900 
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Figure 36: Observed versus simulated days to flowering following simple AGN-
model for all sowing dates in Fanaye, Senegal (E13-E19) across all genotypes. 

y = 0.345x + 56.23 

r² = .473 

Figure 35: Observed versus simulated days to flowering following simple AGN-model 
for all sowing dates in Ambohibary, Madagascar (E8-E12) across all genotypes. 

y = 0.831x + 30.08 

r² = .864 
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5.5 Comparing phenology models 

The residuals (simulated f – observed f) of the four phenology models tested (figure 

37), are all significantly different from each other and from 0. Dingkuhn is the only 

model with a positive residual least squares (LS) mean, which is furthest deviated 

from 0. Thus this model simulates on average a too long crop duration, while for the 

other models the time to flowering is on average underestimated. LS-mean for AGN 

was closest to 0. 

Dingkuhn had had the highest RMSE (30.1 days), but the regression of simulated 

versus observed time to flowering was closest to a 1:1 line (only 5.8% off, intercept 

closest to 0). Lowest RMSE (12.7 days) was found in Summerfield, where the slope 

was furthest off with 44.5% (table 3). The coefficient of determination was highest for 

AGN, which also had the second-best slope (11.4% off) and intercept, while RMSE 

(15.0 days) was close to those of Summerfield and Stuerz. 

 

 

Figure 37: Boxplot of residuals (simulated f - observed f) for the four tested phenology models 
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Table 3: Results from regressing simulated versus observed time to flowering for Summerfield, 
Dingkuhn, Stuerz and AGN phenology models 

Each phenology model has their own strengths and weaknesses. Dingkuhn and 

Stuerz were best at simulating f for the arid Senegalese environments with a 25% 

underestimation and 28% overestimation respectively. However, Summerfield and 

AGN were best at capturing E14 and E18 with the sowing dates in July at the start of 

the rainy season in Fanaye. However, these phenology models fell short when trying 

to simulate f for the other sowing dates at Fanaye, when RH was much lower. Time 

to flowering in Ambohibary was best approached by the AGN-model. In general the 

inclusion of an optimum temperature had a greater effect on improving phenology 

modelling than the inclusion of RH. However, including both may improve 

phenology models even further.  

5.6 Analysing residuals 

A simple linear regression was performed of the individual environmental variables 

RH, VPD, cumulative radiation (rad), PP and PP including twilight (PPTWI) against 

residuals to see which of these, besides temperature and, in case of Stuerz, RH, are 

correlated (table 4). If any of these environmental factor are correlated, including 

them in the phenology model might improve its predictive power.  

Cumulative radiation explained 69.5% of the residuals from the Summerfield-model. 

This was the highest correlation found between residuals and an environmental 

factor of all four models. Radiation explained with 67.8% only a slightly lower 

percentage of the residuals of the Stuerz-model. Radiation is positively correlated 

with temperature: a high solar radiation goes together with high temperatures. In 

the AGN-model this effect has already been captured by the quadratic temperature 

term in the regression and the subsequent inclusion of an optimum temperature. 

Method Intercept Slope r² RMSE LS-mean  

Residual 
Summerfield 45.54 0.555 0.831 12.7 -5.6043a 

Dingkuhn -0.68 1.058 0.762 30.1 6.0189b 

Stuerz 43.00 0.562 0.799 14.3 -7.4198c 

AGN 9.20 0.886 0.900 15.0 -3.9303d 
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This explains the lower coefficient of determination (r²=0.091) between radiation 

and residuals in the AGN-model. 

Table 4: Results of simple linear regressions of the individual environmental variables (RH, VPD, Rad, 
PP and PPTWI) against residuals (simulated f - observed f) for each phenology model.  

 
Summerfield Dingkuhn Stuerz AGN 

 
Int. slope r² Int. slope r² Int. slope r² Int. slope r² 

RH -47.81 0.639 0.138 -56.37 0.95 0.223 10.65 -0.274 0.024 -47.62 0.662 0.384 

VPD 3.29 -0.509 0.041 35.21 -1.67 0.327 -18.50 0.635 0.061 8.86 -0.732 0.221 

Rad 35.92 -0.020 0.695 -2.513 0.0041 0.022 34.46 -0.020 0.678 5.41 -0.0045 0.091 

PP 24.64 -2.509 0.002 -214.6 18.29 0.068 131.33 -11.513 0.035 -81.02 6.397 0.029 

PPTWI 46.16 -4.009 0.005 -233.0 18.51 0.072 148.29 -12.059 0.040 -74.15 5.438 0.022 

 

The main factor explaining residuals in Dingkuhn is VPD with 32.7%. VPD is 

calculated based on both temperature and RH. RH in itself would explain 22.3% of 

the residuals. PPTWI and radiation only explained 7.2% and 2.2% of the residuals 

respectively. In other models the correlation of daylength, with or without twilight, 

was even lower. This is likely due to the fact that PP was averaged over the complete 

period from sowing to flowering, while a rice plant is only sensitive to daylength 

during PSP. If PSP could be simulated and average PP during this period would be 

used for the regression, perhaps this would result in a higher correlation between 

PP and residuals.  

Relative humidity is highly positively correlated with residuals in the AGN-model 

(r²=.384). This correlation is higher than VPD. Probably this is because VPD is based 

on both temperature and RH and there is already an additional temperature term 

included in AGN. Interestingly, there is a low but still significant correlation between 

RH and the residuals of the Stuerz-model, despite this environmental factor already 

being included into the model.  

Next, multiple linear regressions with forward selection of these environmental 

factors was carried out for each of the four phenology models (tables 5 – 8). Since 

PP with and without twilight are highly correlated by definition, including both 

factors would result in multicollinearity. Therefore, and because PPTWI had a slightly 
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higher correlation with residuals in three out of four models, PPTWI was included in 

the multiple linear regression and PP was excluded. 

Table 5: Multiple linear regression with forward selection of environmental factors on residuals of 
Summerfield-model. 

 
Summerfield 

Step Variable Number 

Vars in 

Partial R² Model R² C(p) F Value Pr > F 

1 Rad 1 0.6952 0.6952 2045.75 4347.85 <.0001 

2 VPD 2 0.0938 0.7891 831.833 847.28 <.0001 

3 PPTWI 3 0.0532 0.8423 143.986 642.60 <.0001 

4 RH 4 0.0109 0.8532 5.000 140.99 <.0001 

 

Table 6: Multiple linear regression with forward selection of environmental factors on residuals of 
Dingkuhn-model. 

 
Dingkuhn 

Step Variable Number 

Vars in 

Partial R² Model R² C(p) F Value Pr > F 

1 VPD 1 0.3268 0.3268 377.665 925.40 <.0001 

2 PPTWI 2 0.0498 0.3766 210.952 152.11 <.0001 

3 RH 3 0.0359 0.4125 91.2057 116.41 <.0001 

4 Rad 4 0.0260 0.4386 5.000 88.21 <.0001 

 

Table 7: Multiple linear regression with forward selection of environmental factors on residuals of 
Stuerz-model. 

 
Stuerz 

Step Variable Number 

Vars in 

Partial R² Model R² C(p) F Value Pr > F 

1 Rad 1 0.6777 0.6777 2205.88 4008.27 <.0001 

2 RH 2 0.0540 0.7317 1519.76 383.10 <.0001 

3 VPD 3 0.0425 0.7742 979.333 358.68 <.0001 

4 PPTWI 4 0.0766 0.8508 5.000 976.33 <.0001 
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Table 8: Multiple linear regression with forward selection of environmental factors on residuals of 
AGN-model. 

 
AGN 

Step Variable Number 

Vars in 

Partial R² Model R² C(p) F Value Pr > F 

1 RH 1 0.3842 0.3842 329.538 1189.1 <.0001 

2 VPD 2 0.0639 0.4481 99.799 220.53 <.0001 

3 Rad 3 0.0179 0.4660 36.8465 63.85 <.0001 

4 PPTWI 4 0.0093 0.4753 5.000 33.85 <.0001 

 

All variables entered into the multiple linear regression were significant for all 

models, thus the forward selection resulted in all variables being included in the final 

regression models. Although all factors were found to be significant, some of them 

only slightly improve overall model R², e.g. inclusion of PPTWI in the multiple linear 

regression for AGN only improved the model fit with 0.93%.  

For Stuerz and Summerfield, the complete regression model explained >85% of the 

residuals, while in AGN the complete regression model explained 47.53% and in 

Dingkuhn it only explained 43.86%. This is partly because these models were 

already better at simulating flowering dates, thus the residuals are smaller, while in 

Summerfield and Stuerz, which have a larger discrepancy between simulated and 

observed flowering dates, a larger part of these residuals can be explained by these 

climatic factors.  

It was found that RH explained 38.4% of the residuals of the AGN-model. While other 

environmental factors also significantly explained part of the residuals, they could 

only explain a rather small proportion. After fitting RH, VPD only explained an 

additional 6.4%. Including more factors into a phenology model complicates the 

model and requires higher data input. The general mantra in modelling is ‘simple is 

beautiful’. Therefore it was decided to further develop the AGN-model to include 

the effect of RH, without considering the other environmental factors.  
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5.7 Improved Asch-Groot Nibbelink model 

The original AGN-model was further developed to include the effect of RH to 

improve the simulation of time to flowering. This was done by applying a multiple 

regression including both the quadratic temperature term and RH: 

(26)    𝐷𝑅 = 𝑎 ∗ 𝑇̅2 + 𝑏 ∗ 𝑇̅ + 𝑐 ∗ 𝑅𝐻̅̅ ̅̅ + 𝑑 

The challenge was to translate this regression equation into estimations of cardinal 

temperatures including an RH-adjustment factor, so it can be used to simulate days 

to flowering. Five alternative versions were developed and tested to see which one 

was best at balancing simplicity and accuracy. 
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5.7.1 AGN Version 1 

In the first version TBASE and TSUM were calculated as in the simple AGN-model, while 

TOPT is adjusted to RH. As can be seen in figure 38, the sloped tangent remains 

constant, while the horizontal tangent changes position with changing RH. Tangents 

that change with RH are coloured red, while cardinal temperatures affected by RH 

are coloured dark red. Tangents and cardinal temperatures that remain unaffected 

by RH are black. Regression equation has only been given in figure 38, not in the 

figures of versions 2-5 as it is the same regression, just different tangents. 

Horizontal tangent lines and corresponding optimum temperatures were calculated 

for RH=0% (𝑇𝑜𝑝𝑡0) and for RH=100% (𝑇𝑜𝑝𝑡100) . The RH-adjustment factor for TOPT is 

calculated as: 

(27)    𝑅𝐻𝑎𝑑𝑗.𝑜𝑝𝑡 =
𝑇𝑜𝑝𝑡100−𝑇𝑜𝑝𝑡0

100
 

 

Figure 38: Multiple regression of development rate (1/f) of IR64 versus mean air temperature and 
mean relative air humidity (RH) in 24 environments (E9 missing) across 5 different sites. AGN version 
1 where TOPT increases with RH, while TBASE and TSUM remain constant. 

y = -4.16E-05*T² + 2.47E-03*T 

+ 6.31E-05*RH -2.93E-02 

r² = .947 
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5.7.2 AGN Version 2 

In the second version, TSUM and TOPT remain constant and are calculated as in the 

original AGN-model, while TBASE is adjusted for RH (figure 39). Thus both tangents 

change position, while only TBASE decreases as RH increases.  

 

 

  

Figure 39: Multiple regression of DR of IR64 vs mean T and mean RH in 24 environments (E9 
missing) across 5 different sites. AGN version 2 where TBASE decreases with increasing RH, while 
TOPT  and TSUM remain constant. 
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5.7.3 AGN Version 3 

In the third version, the horizontal tangent remains unaffected by RH, while the 

sloped tangent changes with RH while its slope remains constant (figure 40). Thus, 

TBASE and TOPT change with RH but the same RH-adjustment factor applies to both 

TBASE and TOPT.  

 

 

  

Figure 40: Multiple regression of DR of IR64 vs mean T and mean RH in 24 environments (E9 
missing) across 5 different sites. AGN version 3 where sloped tangent moves with RH while 
horizontal tangent remains as in simple AGN; thus TBASE and TOPT  vary with same RHADJ factor. 
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5.7.4 AGN Version 4 

In this version both tangents move with RH, while the slope of the sloped tangent 

remains constant. This means that both TBASE and TOPT are adjusted to RH, although 

they are not equally sensitive. Figure 41 shows that TBASE responds much stronger to 

humidity than TOPT, where the change is barely noticeable. 

  

Figure 41: Multiple regression of development rate (1/f) of IR64 versus mean air 
temperature and mean relative air humidity (RH) in 24 environments (E9 missing) across 
5 different sites. AGN version 4 where both tangents move with RH, thus both TBASE and 
TOPT are adjusted to RH while TSUM remains constant.  
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5.7.5 AGN Version 5 

In this last and most complex version all cardinal temperatures are adjusted to the 

effect of RH (figure 42). The sloped tangent changes in angle, causing TSUM to change 

with RH. When simulating the flowering dates this is captured by multiplying TSUM 

with an RH-adjustment factor. Thus in humid environments the slope of the tangent 

increases and TSUM is reduced. 

 

 

5.7.6 Comparing model versions 

Table 9 shows the cardinal temperatures and RH-adjustment factors for IR64 as 

estimated with the five different versions of the improved AGN-model. This was 

done for each of the 80 genotypes.  

Table 9: Cardinal temperature for IR64 as estimates based on the five versions of AGN-model 

Method TSUM TBASE TOPT RHADJ.SUM RHADJ.BASE RHADJ.OPT 

Figure 42: Multiple regression of development rate (1/f) of IR64 versus mean air temperature and 
mean relative air humidity (RH) in 24 environments (E9 missing) across 5 different sites. AGN 
version 5 where both tangents move with RH, and the slope changes with RH. Thus all cardinal 
temperatures have an individual RH-adjustment factor.  
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AGN v1 944 12.26 19.26 0 0 0.060 

AGN v2 944 16.79 22.90 0 -0.064 0 

AGN v3 944 16.79 27.44 0 -0.064 -0.064 

AGN v4 944 16.79 23.79 0 -0.064 -0.004 

AGN v5 1274 15.57 25.01 -3.38 -0.051 -0.017 

 

Based on the genotype-specific cardinal temperatures and RH-adjustment factors, 

daily TPHYS was calculated. For this, eqn 25 was adapted to include both an RH-

adjustment factor for TBASE and for TOPT: 

(28)  𝑇𝑝ℎ𝑦𝑠 = max (min ((𝑇𝑜𝑝𝑡 + 𝑅𝐻𝑎𝑑𝑗.𝑜𝑝𝑡 ∗ 𝑅𝐻𝑎𝑣), 𝑇𝑎𝑣) − 

(𝑇𝑏𝑎𝑠𝑒 + 𝑅𝐻𝑎𝑑𝑗.𝑏𝑎𝑠𝑒 ∗ 𝑅𝐻𝑎𝑣), 0) 

Note that the RH-adjustment factor for TBASE was renamed to specify which cardinal 

temperature it adjusts. Whenever in a model version a cardinal temperature is not 

adjusted for RH, this factor is simply set to 0. For version 5, TSUM was calculated as 

𝑇𝑆𝑈𝑀 + 𝑅𝐻 ∗  𝑅𝐻𝐴𝐷𝐽.𝑆𝑈𝑀 , and thus varied per day. Tphys was again summed until 

TSUM was reached, returning a flowering date. The simulated days from sowing to 

flowering were regressed versus observed days from sowing to flowering (table 10 

and figure 43) and subsequently residuals were calculated and analysed (figure 44).  

Table 10: Results from regressing simulated vs. observed time to flowering for the five versions of 
AGN-model 

Method Intercept Slope r² RMSE LS-mean 

Residual 

AGN v1 1.65 0.937 0.938 12.3 -5.547 c 

AGN v2 11.85 0.880 0.959 9.3 -1.907 a 

AGN v3 13.78 0.849 0.956 9.2 -3.597 b 

AGN v4 5.45 0.899 0.969 8.2 -6.192 c 

AGN v5 9.19 0.904 0.954 10.1 -1.880 a 
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Figure 43: Simulated versus observed days to flowering for all five versions of the improved AGN-
model 
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Mean residuals of version 2 and 5 were not significantly different (p=.941). It is 

surprising how close the residuals of these two versions are, considering how 

different the cardinal temperatures are estimated. Mean residuals of versions 1 and 

4 were also found to be not significantly different from each other at p=.0796.  

Since version 5 is the most complex version with a variable TSUM, and it is not 

significantly better at simulating crop duration than any of the other versions, this 

version was discarded. Version 1 and 4 have mean residuals furthest deviating from 

0. Version 4 has the lowest RMSE (8.2 days). Version 1 has the best results of the 

regression from simulated versus observed days to flowering with an intercept of 

1.65 and a slope of .937 it was only 6.3% off. Despite this version having a higher 

RMSE (12.3 days) and a slightly lower r² (.938), these values are still a great 

improvement compared to the phenology models of Summerfield, Dingkuhn and 

Stuerz. The increased complexity from versions 2-5 did not show a clear added 

value, i.e. they did not provide major improvements in phenology modelling. 

Therefore version 1 is selected to be the final version of the AGN-model. 

  

Figure 44: Boxplot of residuals of the five AGN versions 
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6 Discussion 

6.1 Timing of Panicle Initiation 

According to Vergara (1991) and IRRI (n.d.), RP lasts approximately 35 days. 

Dingkuhn et al. (1995) estimate PI to occur 30 days before flowering, while GRiSP 

(2013) describe PI to occur about 25 days before heading. In contrast to literature, 

according to the data from this project duration from PI to flowering is not fixed in 

number of days. The results show a large variation in time from PI to flowering, 

suggesting a considerable environmental influence on duration of RP. In the cool 

environments of Ambohibary the average time from PI to flowering was much longer 

than at other locations. It was more than twice as long as the average duration in the 

warm environments of Ruvu.  

Our findings are to some level in accordance with Vergara (1991), who already 

reported that the length of RP might take twice as long in temperate and high-

altitude regions. Ambohibary with its elevation of 1634 m above sea level is a typical 

high-altitude environment. However, Vergara, (1991) also wrote that length of RP is 

fixed in tropical environments, while this study found considerable differences in 

duration between tropical environments. E.g duration from PI to flowering for rice 

sown in August 2014 in Cotonou was on average 21 days, while for rice sown in 

November 2015 in Mbe duration of RP was on average 41 days, while both are low-

altitude tropical environments.  

In RIDEV2 TSUM during RP is set to 400°Cd (Dingkuhn et al., 2017). However, our 

data showed an average TSUM during RP of 772°Cd, however this was purely the 

sum of air temperatures, without subtracting a daily Tbase. Nevertheless, our data 

showed considerable variation in RP measured in dd between locations and within 

locations. Although assuming a constant TSUM during RP is better than assuming a 

constant number of days, it can still not capture the variation observed in reality.  

The variation in duration from PI to flowering can be partially explained by the 

influence of environment, partially by measurement error (different observers at 

different locations could observe PI slightly differently) and possibly the genotype 
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plays a role as well, e.g. in sensitivity to temperature during RP (Dingkuhn et al., 

2017).  

In the phenology subroutine of ORYZA2000, phenology is ranked on a numerical 

scale, from emergence (DS=0) to end of BVP i.e. start of PSP (DS=0.4),PI (DS=0.65), 

flowering (DS=1) and maturity (DS=2), where DS is the integral of DR (Bouman et al., 

2001; van Oort et al., 2011). In this model, there is a fixed ratio rather than fixed 

number of days between PI and flowering date. Duration of VP can be estimated as 

0.65*f and duration of RP can be estimated as 0.35*f. Here PI date is not fixed in 

number of days, but instead depends on crop duration, which in turn is influenced 

by the environment. However, applying this approach to estimate PI to our dataset 

did not give better results (regression of estimated vs observed days from sowing 

to PI: 𝑦 = .773𝑥 + 11.34 ; r²=.931) than simply estimating PI as 30 days before 

flowering date (𝑦 = 1.162𝑥 − 13.92; r²=.921). Neither estimating PI as a fixed number 

of days before flowering nor as a ratio gave satisfactory results. 

There is potential to develop a model to simulate PI date based on the data from 

this research project. However, this was not the focus of my thesis research. If PI date 

could be simulated accurately, the models by Summerfield (eqn 3) and Dingkuhn 

(eqn 10) including the effect of PP could be tested and compared to the AGN-

model. 

The exact PI date is difficult to measure and prone to human error, as was shown for 

the erroneous PI data recorded at E13 and E15 in Fanaye, Senegal. The stem has to 

be dissected to observe the start of the panicle, which is barely visible with the bare 

eye at about 1mm in length (GRiSP, 2013). The AGN-model circumvents this 

problem by simulating flowering date without accounting for daylength during PSP, 

thus there is no need to know PI date. Instead it simulates flowering dates based on 

cardinal temperatures, air temperature and relative air humidity over the period 

from sowing to flowering.  

6.2 Model Limits 

Every model works well within certain limits. Rice phenology models are limited to 

certain environmental conditions. Outside the environmental range they have been 
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designed and calibrated for, their predictive power is limited. In this subchapter the 

model limits for the tested and newly developed phenology models are discussed. 

6.2.1 Summerfield 

Summerfield et al. (1992) have clearly defined model limits regarding temperature, 

namely that the “coldest values of T experienced by plants are not below the base 

temperature at which 1/f= 0” and  “that the warmest temperatures experienced are 

not above the optimum temperature at which 1/f is a maximal value”. Only when 

these conditions are met the relationship between DR and 𝑇̅ is linear.  

RGT experiments for this project were conducted at a wide range of environments. 

At some environments temperatures dropped below base temperatures, 

particularly at Ambohibary (E8-E12), while at other environments the rice plants 

experienced temperatures beyond TOPT, particularly at Fanaye (E13-E19) with 

maximum daily temperatures beyond 40°C. At other environments maximum 

temperatures peaked beyond TOPT as well, e.g. at Ruvu (E20-E25), where daily 

maximum temperatures were well above 30°C at most days, which is reflected in DR 

no longer increasing with increasing 𝑇̅  for some genotypes e.g. IR64. Thus, at a 

number of environments Summerfield’s model limits were transgressed, resulting in 

unrealistically low TBASE estimations: for three genotypes TBASE was estimated below 

freezing point at the highest TBASE found with Summerfield was 7.92°C, which is still 

lower than the default base temperatures in most crop models.  

Summerfield et al. (1992) already observed that DR stagnates beyond TOPT and 

propose a broken-stick model with constant or slightly decreasing DR beyond TOPT. 

TOPT was estimated at approximately 25°C (Summerfield et al 1992). However, this 

seems to be simply based on visual interpretations of the data and they do not offer 

a method for estimating TOPT. 

6.2.2 Dingkuhn 

The simplest Dingkuhn-model as applied in this thesis is limited in that it does not 

account for the effects of photoperiodism and transplanting shock, something the 

more complex model (eqn 9) does (Dingkuhn et al., 1995). They state that 

“prediction errors in exclusively thermal simulation of f partly are due to 
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photoperiodism”. They also found a systematic overestimation of TBASE, ranging from 

14.5 to 19.5°C, which is significantly higher than TBASE estimates found when applied 

to our dataset (ranging from 8.9 to 11.0°C). They identified a need for including an 

optimum temperature and using water temperature instead of air temperature to 

improve the model accuracy.  

Dingkuhn’s model was developed based on data collected in the Sahel. 

Interestingly, this model resulted, similar to Summerfield, in a systematic 

underestimation of crop duration at the hot-arid Fanaye environments. Thus, 

suggesting that Dingkuhn’s model is limited in simulating crop duration in dry 

environments as well, when genotype-specific parameters are calibrated over a 

wide range of environments. Overall, this model was better at predicting crop 

duration than the Summerfield- and Stuerz-model, mainly due to accurate 

simulations of f at Cotonou, Mbe and Ruvu, and due to an overestimation of f in 

Ambohibary, which partly compensates for the underestimation of crop durations at 

Fanaye. Dingkuhn’s model was able to simulate flowering dates at E10 quite well for 

most genotypes, yet it gave poor results at other cool environments, especially E8 

and E9. This is odd, as E10 was the most extreme environment regarding low 

temperatures and short days, while E8 and E9 had longer days and cool but not 

quite as cold temperatures.  

Dingkuhn et al. (1995) identified that using water temperatures (TWATER) instead of air 

temperatures when estimating cardinal temperatures improves accuracy, because, 

as they argue, the temperature at the shoot apex i.e. growing point, is the 

physiologically relevant temperature and until booting the apex is below the water 

surface. TWATER is influenced by air temperature, wind speed, RH, solar radiation, 

water source (e.g. irrigation water heated in a basin or directly from a glacier-fed 

river) and crop cover (expressed in leaf area index; LAI). Water temperature was 

found to be usually cooler than air temperature at low RH and high LAI. After 

booting, the shoot apex rises above the water surface and a rice plant experiences 

canopy temperatures from then on, which may significantly differ from air 

temperatures outside the canopy i.e. at a meteorological station. During this project, 

TWATER was measured at MC plots, however it was complete for only two 
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environments (E16 and E17). RIDEV2 offers the possibility to simulate TWATER based 

on LAI (Dingkuhn et al., 2017). However, LAI data collected during this project was 

insufficient to simulate TWATER. Therefore air temperature was used instead. Perhaps 

estimating cardinal temperatures based on TWATER would have resulted in better 

predictions of f, but the need for additional data on TWATER and/or LAI is a limitation 

as this data is often lacking or incomplete.  

6.2.3 Stuerz 

Stuerz’ model is similar to Summerfield and therefore by definition subject to the 

same temperature limitations. Therefore this model ran into the same problems 

when simulating flowering dates for Ambohibary as Summerfield’s model. It is, like 

Summerfield, still able to simulate flowering dates for E8, but not for any of the other 

cool Ambohibary environments. On the other hand the inclusion of RH makes this 

model applicable to a wider range of environments with regard to differences in RH. 

This is shown by the significant improvements simulation of crop duration for the 

arid Fanaye environments. 

6.2.4 Asch-Groot Nibbelink 

The inclusion of TOPT in AGN improves the simulation of flowering dates at 

environments with temperatures near and beyond TOPT. This model is applicable to 

a wider range of environments, especially to hotter environments, than both 

Summerfield and Stuerz. The inclusion of an RH-adjustment factor widens the 

applicability of this model to more arid environments. 

AGN may have an upper temperature limit. When a rice plant experiences 

temperatures significantly beyond TOPT, DR may reduce, which is reflected by some 

rice crop models (e.g. ORYZA-family) by including a maximum temperature (TMAX) at 

which DR=0. However, recent studies found that models without a TMAX actually gave 

more accurate crop duration simulations (van Oort et al., 2011; Zhang et al., 2016). 

No decline in DR at temperatures > TOPT was observed in this dataset.  

There is potential to include a TMAX in the AGN-model as it is based on a second 

order regression and a third tangent could potentially be included, mirroring the 

first sloped tangent. The intersect of this tangent with the x-axis would be TMAX. 
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However, additional data on rice grown in extremely hot environments, especially 

hot-humid environments, is required to see first of all if DR declines at mean 

temperatures beyond TOPT, and if yes, to quantify this decline and estimate TMAX.  

6.3 Influence of relative humidity on phenology 

It has been shown that RH is positively correlated with DR. Thus the time from sowing 

to flowering of rice is shorter in humid environments than in dry environments with 

the same mean temperature. This relationship between air humidity and phenology 

in rice has been reported by Stuerz et al. (2020). That leads to the question: How 

does RH influence phenology?  

One explanation could be that low RH conditions lead to higher VPD, thereby 

increasing transpiration. This causes the plant to lose more water to the air and 

stomatal closure in response to dry conditions to reduce water losses. Stomatal 

closure limits gas exchange and all processes depending thereon, including 

photosynthesis and development rate. However, rice was grown in a lowland 

irrigated production system, thus the plant never experienced drought stress during 

the experiments. Thus reduced development rate due to drought-induced stomatal 

closure cannot be the answer as to how RH influences phenology in paddy rice.  

A more likely explanation is that low RH leads to higher transpiration cooling of the 

plant and thus cools down the canopy temperature. This process of transpiration 

cooling affecting rice has also been described by Julia & Dingkuhn (2013), who 

found that “warm-humid conditions cause more heat stress than hot-arid conditions”. 

Transpiration cooling avoids heat stress in rice by reducing panicle temperatures 

(Julia & Dingkuhn, 2013), but if this leads to temperatures below TOPT it will reduce 

DR.  

6.4 Improving rice crop models 

Including an optimum temperature for simulating phenology, as proposed with the 

AGN-model, is not new. Many rice crop models already include optimum and 

maximum temperatures in their phenology subroutine. Commonly used 

temperature response functions are 1) Blackman, where DR increases linearly from 
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TBASE (DR=0) until max. DR at TOPT, thereafter at temperatures > TOPT DR remains at 

max. value (employed in Ceres-rice); 2) Bilinear, where DR increases from TBASE to 

max. DR at TOPT and at temperatures beyond TOPT DR declines linearly to DR=0 at 

TMAX (employed in ORYZA2000); 3) Beta, similar to the bilinear function, but with a 

bell-shape, thereby modelling a slower change in DR at temperatures near the 

cardinal temperatures (van Oort et al., 2011). The AGN phenology model uses the 

Blackman temperature response function, or can be seen as a special case of the 

bilinear function where TMAX has been set to infinity. 

Cardinal temperatures are often assumed at default values (Ceres-rice TBASE 9°C, TOPT 

33°C, no TMAX; Oryza TBASE 8°C, TOPT 30°C, TMAX 42°C), making it easier to calibrate the 

remaining phenology parameter i.e. TSUM (van Oort et al., 2011). However, as van 

Oort et al. (2011) show, using default cardinal temperatures often leads to highly 

flawed results. Van Oort et al. (2011) propose a new ORYZA2000-compatible 

calibration tool that is able to estimate all phenological input parameters 

simultaneously: Pheno_opt_rice. This approach is purely statistical, without 

incorporating the effects of individual environmental factors. Stuerz et al. (2020) 

applied Pheno_opt_rice and found that it was better at simulating f at individual 

sites, however it fell short of Stuerz’ method when predicting crop duration across a 

wider range of environments, which shows that this purely statistical approach lacks 

a certain level of robustness as it does not account for the influence of individual 

climatic determinants i.e. environmental factors, while Stuerz-model does with the 

inclusion of RH.  

What is new with the AGN-model is the way TBASE, TOPT and TSUM and an RH-

adjustment factor for TOPT are calibrated simultaneously based on time from sowing 

to flowering, mean air temperature and mean RH over the same period. Adjusting 

phenological parameters to RH significantly improves robustness of phenology 

modelling over a wide range of environments. It should be quite easy to incorporate 

an RH-adjustment factor for cardinal temperatures into the phenology subroutine of 

existing rice crop models as the formulas are relatively easy and do not require much 

calculation time. 
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6.5 Future research 

The data collected for this project by AfricaRice is a magnificent data source. It holds 

much more information than what has been analysed and presented in this thesis. 

There is e.g. data on grain and straw yield and yield separation data (ratio and 

amount of partially and completely filled grains), which a next researcher could use 

to try to understand the interactions between genotype, environment and yield. 

There is also data on spikelet sterility, which could be used to improve models of 

cold and heat induced spikelet sterility. The data offers the potential to develop a 

method to improve PI date estimation and therefore duration of the reproductive 

phase. Once PI date is known or estimated, photoperiod-sensitivity during PSP can 

be included in phenology modelling.  

Continuing the path started by this thesis, it is recommended to conduct more RGTs 

at environments similar to Ambohibary with regard to temperature. The cardinal 

temperatures estimated in this study are highly influenced by four to five data points 

-per genotype- from Madagascar. The reliability of the cardinal temperature 

estimates would increase if more data from ‘cooler’ environments could be 

incorporated.  

Moreover, it would be interesting to dissect the data for E10, where there was clear 

G x E interaction affecting some short-duration varieties. What could be the reason 

that these genotypes cannot be captured by the AGN-model? Furthermore, it would 

be interesting to run existing rice crop models with the cardinal temperatures found 

in this study and to see how accurately they can simulate flowering dates. Also, it 

would make sense to look at the grain yield and SST data, and to combine those 

results with the improved phenology model, to create cropping calendars and 

location-specific advice on optimum sowing dates in order to avoid environmental 

risks and increase rice yields.   
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7 Conclusion 

Genotype by environment interactions affect crop duration of rice. Temperature and 

relative humidity are the two main environmental factors influencing this trait, while 

daylength was found to be less important than previously stated in literature. 

Furthermore it was found that duration from PI to flowering is not fixed in number of 

days nor in number of degree-days. PI date appears to be influenced by G x E 

interactions as well. Genotype-specific cardinal temperatures of the 80 rice varieties 

tested during this project were estimated by applying three readily available simple 

phenology models from literature, as developed by Summerfield et al. (1992), 

Dingkuhn et al. (1995) and Stuerz et al. (2020). Besides these three models, a new 

phenology model was developed by Asch and Groot Nibbelink: The AGN-model. 

This model is based on a multiple linear regression including both a quadratic 

temperature term and relative humidity: 𝐷𝑅 = 𝑎 ∗ 𝑇̅2 + 𝑏 ∗ 𝑇̅ + 𝑐 ∗ 𝑅𝐻̅̅ ̅̅ + 𝑑. Cardinal 

temperatures are estimated by taking the tangents and including a genotype-

specific RH-adjustment factor resulting in TOPT increasing with increasing RH. 

Simulations of crop duration are made based on these cardinal temperatures in 

combination with daily weather data. With a slope of 0.937, an r² of 0.938 and RMSE 

of 12.3 days when regressing observed versus simulated crop duration, the AGN-

model was found to be better at simulating f than the three tested phenology 

models. Therefore it is suggested to include an RH-adjustment factor for optimum 

temperature into the phenology subroutines of existing rice growth models. This 

should be easily possible for crop modellers proficient in the respective code 

languages.  

This thesis is a step towards improving rice crop models. It helps creating a better 

understanding of the environmental factors affecting phenology and how to 

incorporate these to create a better phenology subroutine in rice crop models. This 

in turn can be used to improve yield modelling under climate change scenarios, to 

create better locally-adapted cropping calendars and to improve decision-support-

tools, such as RiceAdvice, which can provide location-specific advice to farmers and 

extension workers on optimum sowing date and suitable varieties, so yields may be 

increased without a need for additional external inputs.  
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